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ABSTRACT 
Most music processing attempts to focus on one 
particular feature or structural element such as pitch, beat 
location, tempo, or genre. This hierarchical approach, in 
which music is separated into elements that are analyzed 
independently, is convenient for the scientific researcher, 
but is at odds with intuition about music perception. 
Music is interconnected at many levels, and the interplay 
of melody, harmony, and rhythm are important in 
perception. As a first step toward more holistic music 
analysis, music structure is used to constrain a beat 
tracking program. With structural information, the simple 
beat tracker, working with audio input, shows a large 
improvement. The implications of this work for other 
music analysis problems are discussed. 

Keywords: Beat tracking, tempo, analysis, music 
structure 

1 INTRODUCTION 
Music is full of multi-faceted and inter-related 
information. Notes of a melody fall into a rhythmic grid, 
rhythm is hierarchical with beats, measures, and phrases, 
and harmony generally changes in coordination with 
both meter and melody. Although some music can be 
successfully decomposed into separate dimensions of 
rhythm, harmony, melody, texture, and other features, 
this kind of decomposition generally loses information, 
making each dimension harder to understand.  

In fact, it seems that musicians deliberately 
complicate individual dimensions to make them more 
interesting, knowing that listeners will use other 
information to fill in the gaps. Syncopation can be 
exaggerated when the tempo is very steady, but we hear 
less syncopation when tempo is more variable. 
Confusing rhythms are often clarified by an 
unmistakeable chord change on the first beat of a 

measure. Repetition in music often occurs in some 
power-of-two number of measures, providing clear 
metrical landmarks even where beats and tempo might 
be ambiguous. 

It is easy to notice these interrelationships in music, 
but difficult to take advantage of them for automatic 
music analysis. If everything depends on everything 
else, where does one start? If perception is guided by 
expectations, will we fail to perceive the “truth” when it 
is unexpected? Music analysis produces all kinds of data 
and representations. How can the analysis of one 
dimension of music inform the analysis of another, given 
the inevitable errors that will occur? These are all 
difficult questions and certainly will form the topic of 
much future research. 

This paper describes a small step in this general 
direction. I will show how information about music 
structure can be used to inform a beat tracker. In all 
previous beat trackers known to the author, an algorithm 
to identify beats is applied uniformly, typically from the 
beginning to the end of a work. Often times, beat 
trackers have a tendency to be distracted by syncopation 
and other musical complexities, and the tracker will drift 
to some faster or slower tempo, perhaps beating 4 
against 3 or 3 against 4. 

In contrast, when musical structure is taken into 
account, the beat tracker can be constrained such that 
when a beat is predicted in one section of music, a beat 
is also predicted at the corresponding place in all 
repetitions of that section of music. In practice, these are 
not absolute constraints but probabilistic tendencies that 
must be balanced against two other goals: to align beats 
with sonic events and to maintain a fairly steady tempo. 

It might seem that if a beat tracker can handle one 
section of music, it can handle any repetition of that 
section. If this were the case, the additional constraint of 
music structure would not help with the beat-tracking 
problem. Tests with real data, however, show a dramatic 
improvement when music structure is utilized. How can 
this be? A simple answer is that the input data is audio, 
and the detection of likely beat events is error prone. 
Music structure helps the beat tracker to consolidate 
information from different sections of music and 
ultimately do a better job. This will be explained in 
greater detail in the discussion section. 

The next section describes related work. Then, in 
Section 3, I explain the basic beat tracker used for 
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experiments. In Section 4, music structure analysis is 
described, and the additions to the beat tracker to use 
structure information are described in Section 5. In 
Section 6, I describe tests performed and the results. 
Section 7 presents a discussion, which is followed by a 
summary and conclusions. 

2 RELATED WORK 
The literature has many articles on beat tracking. 
Gouyon and Dixon have written an excellent overview 
with an extensive list of references. [1] For this work, I 
relied especially on the HFC (high frequency content) 
feature [2] for detecting likely beat events, as used by 
Davies and Plumbley [3] and also by Jensen and 
Andersen [4]. The general structure of the beat tracker is 
related to that of Desain and Honing [5] in that the 
tracker relies on gradient descent. Desain and Honing 
adjust the times of actual beat events to fit an expected 
model, whereas my system adjusts a tempo estimate to 
fit the actual times. 

This work is not unique in attempting to incorporate 
music structure and additional features to analyze music. 
In particular, Goto and Muraoka used knowledge of 
drum beat patterns to improve beat tracking of popular 
(rock) music with drums [6], and Goto used some music 
classification techniques to handle music with drums 
differently from music without drums [7]. 

3 THE BASIC BEAT TRACKER 
In order to show that music structure can help with the 
beat tracking problem, I first constructed a “baseline” 
beat tracker to measure performance without any music 
structure information. This beat tracker is based on 
state-of-the-art designs, but it has not been carefully 
tuned. 

As is common, the beat tracker consists of two parts. 
The first part computes likely beat events from audio. 
Likely beat events are time points in the audio that 
suggest where beats might occur. These are represented 
as a discrete set of (time, weight) pairs. The second part 
attempts to identify more-or-less equally spaced beats 
that correspond to the likely beat events. Not all likely 
beat events will turn out to be beats, and some beats will 
not coincide with a likely beat event. The baseline beat 
tracker attempts to balance the two criteria of steady 
tempo and good matches to likely beat events. 

3.1 Likely beat event detection. 

One might expect that beats would be simple to 
detect in popular music, given the typically heavy-
handed rock beat. Unfortunately, the loud snare hits are 
not so different spectrally from rhythm guitar chords or 
even vocal onsets and consonants. Furthermore, much 
popular music exhibits heavy dynamic compression, 
giving the music an almost constant energy level, so 
looking for peaks in the amplitude envelope is unreliable 

for detecting beats. High frequency content (HFC) [2] 
and spectral flux [8] are alternatives to RMS amplitude. 

I use an HFC feature to detect likely beat events. 
Music audio is mixed from stereo to a single channel 
and downsampled to 16 kHz. FFTs of size 1024 are 
taken using a Hanning window applied to each (possibly 
overlapping) segment of 512 samples to yield a 
sequence Xn of complex spectra1. The per-frame HFC 
feature is the sum of the magnitudes weighted by the 
square of the bin number [4]: 
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where |Xn[i]| is the magnitude of the ith bin of the nth 

frame. Note that some authors use the square of the 
magnitude and others weight linearly with bin number. 
To detect events, some thresholding is necessary. A 
running average is computed as: 
 11 1.09.0 −− ⋅+⋅= nnn hfcavgavg  (2) 

The ratio hfcn/avgn exhibits peaks at note onsets, drum 
hits, and other likely beat locations. Unfortunately, even 
after normalizing by a running average, there will be 
long stretches of music with no prominent peaks. This 
problem is solved by a second level of thresholding 
which works as follows: 
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Thus, the nominal threshold is 2, which captures every 
strong peak (rn > 2) that occurs. When strong peaks are 
not present, the threshold adapts to detect smaller peaks. 
Whenever the threshold thrn is exceeded by rn, the time 
is recorded along with rn, which serves as a weight in 
further computation. (In the next section, these pairs of 
(n/framerate, rn) will be referred to as (ti, wi), a 
time/weight pair.) Since some peaks are broad and span 
multiple samples, no further times are recorded until rn 
dips below the threshold. 

The adaptive median threshold method [9] offers an 
alternative method for picking peaks from hfcn. This 
method essentially replaces avgn with a local median 
value of hfcn, and it does not adapt when peaks are close 
to the median. 

3.2 Beat tracking: initialization. 

The beat tracking algorithm works from an initial beat 
location and tempo estimation, so the next step is to 
search for good initial values. This is not an on-line or 
real-time algorithm, so the entire song can be searched 
for good starting values. It is assumed that the likely 
beat events will be highly correlated with a “beat 
pattern” function shown at the top of Figure 1. This 

                                                           
1 A step size of 64, yielding a frame rate of 250 Hz, was used to 
minimize any time quantization effects. However, there does not 
appear to be any significant difference when using even the lowest 
frame rate tried, 31.25 Hz. 
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pattern represents the expected locations of quarter notes 
(full peaks) and eighth notes (half peaks), and is biased 
so that the integral is zero. The pattern is not meant to 
model a specific musical pattern such as a drum pattern. 
It merely models alternating strong and weak beats at a 
fixed tempo, and only this one pattern is used. The 
pattern is stretched in 2% increments from a beat period 
of 0.3s (200 bpm—beats per minute) to 1.0s (60 bpm)1. 
At each tempo, the function is shifted by 5 increments of 
1/5 beat. Given a tempo and shift amount, the “goodness 
of fit”, gf, to the data is given by:  
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where t0 is used to center the beat pattern over some 
interior point in the song, � is the period, φ is the shift 
(in beats), bp is the beat pattern function (top of Figure 
1), and (ti, wi) are the likely beat event times and weights 
calculated in Section 3.1.2 

 

 

Figure 1. Beat patterns used to search for initial 
beat location and tempo. 

Each configuration of tempo and shift is further 
refined using a gradient descent algorithm to find the 
best local fit to the data. Then the peaks of the beat 
pattern function are sharpened as shown in the lower 
half of Figure 1 to reduce the weight on outliers, and the 
gradient descent refinement is repeated. 

All this estimates a tempo and offset for a general 
neighborhood in the song near t0. We want to find a 
place where beats are strong and the data is as 
unambiguous as possible, so we estimate the tempo and 
beat offset at 5 second intervals (t0=5, 10, 15, …) 
throughout the entire song. The values that maximize gf 
are used to initialize the beat tracker. 

3.3 Beat tracking. 

Beat tracking is accomplished by extending the idea of 
the beat pattern function and gradient decent. Imagine 
broadening the window on the beat pattern function 
(Figure 1) to expose more peaks and using gradient 
decent to align the function with increasingly many 
likely beat events. This is the general idea, but it must be 
modified to allow for slight tempo variation.  

Tempo (and period) is assumed to be constant within 
each 4-beat measure, so a discrete array of period values 
serves to record the time-varying tempo. Given a vector 

                                                           
1 These are, of course, parameters that could be changed to accept a 
larger range of tempi. In practice, the tracker will tend to find multiples 
or submultiples when the “correct” tempo lies out of range. 
2 Note that we can consider the entire, continuous HFC signal simply 
by including every sample point rn in the set of data points (ti, wi). At 
least on a small sample of test data, this does not improve 
performance. 

of beat periods, pv, and an origin, t0, it is not difficult to 
define a function from time (in seconds) to beat (a real 
number). Call this the “time warp” function �pv, t0(t). The 
goodness of fit function can then be modified to 
incorporate this “time warping:”  
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This function maps each likely beat event from time to 
beat, then evaluates the beat pattern at that beat. Recall 
that the beat pattern has peaks at integer beat and sub-
beat locations.

 

If the only criterion was to match beats, we might see 
wild tempo swings to fit the data, so we add a “tempo 
smoothness” that penalizes tempo changes: 
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where gauss(µ, σ, x) is the Gaussian with mean µ and 
standard deviation σ, evaluated at x.  

The beat tracking algorithm performs a gradient 
descent to fit the predicted beats to the likely beat 
events. The goal is to optimize the sum of gfw and ts, 
which represent a good fit to the beat pattern and a 
smooth tempo curve. Notice, however, that the beat 
pattern function shown in Figure 1 rapidly goes to zero, 
so likely beat events outside of a small window will be 
ignored. Although not described in detail, the beat 
pattern bp consists of a periodic beat pattern multiplied 
by a window function. The window function can be 
widened to consider more beats. 

The beat tracking algorithm alternately widens the 
window function for the beat pattern to consider a few 
more beats at the left and right edges of the window. 
Then, gradient descent is used to make slight 
adjustments to the period vector (tempo curve), possibly 
taking into account more likely beat events that now fall 
within the wider window. This alternation between 
widening the window and gradient descent continues 
until the window covers the entire song. 

3.4 Beat tracking performance. 

As might be expected, this algorithm performs well 
when beats are clear and there is a good correspondence 
between likely beat events and the “true” beat. In 
practice, however, many popular songs are full of high 
frequency content from drums, guitars, and vocals, and 
so there are many detected events that do not correspond 
to the beat pattern. This causes beat tracking problems. 
In particular, it is fairly common for the tempo to 
converge to some integer ratio times the correct tempo, 
e.g. 4/3 or 5/4. This allows the beat pattern to pick up 
some off-beat accents as well as a number of actual 
downbeat and upbeat events. 

One might hope that the more-or-less complete search 
of tempi and offsets used to initialize the beat tracker 
might be used to “force a reset” when the tempo drifts 
off course. Unfortunately, while the best match overall 
usually provides a good set of initial values, the best 
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match in the neighbourhood of any given time point is 
not so reliable. Often, it is better not to reset the beat 
tracker when it disagrees with local beat information. 

Human listeners can use harmonic changes and other 
structural information to reject these otherwise plausible 
tempi, and we would like to use structural information to 
improve automatic beat tracking, perhaps in the same 
way. The next two sections look at ways of obtaining 
structure and using structure to guide beat tracking. 

4 STRUCTURAL ANALYSIS 
Previous work on structural analysis identified several 
approaches to music analysis. [10] This work aimed to 
find “explanations” of songs, primarily in the form of 
repetition, e.g. a standard song form is AABA. For this 
study, I use the chroma vector representation [11], 
which is generally effective for the identification of 
harmony and melody. [12] The chroma vector is a 
projection of the discrete Fourier transform magnitude 
onto a 12-element vector representing energy at the 12 
chromatic pitch classes. [13] 

A self-similarity matrix is constructed from chroma 
vectors and a distance function: every chroma frame is 
compared to every other chroma frame. Within this 
matrix, if music at time a is repeated at time b, there will 
be roughly diagonal paths of values starting at locations 
(a, b) and (b, a), representing sequences of highly 
similar chroma vectors and extending for the duration of 
the repetition. (See Figure 2.) 

b

b

a

a

 
Figure 2. Paths of high similarity in the similarity 

matrix. Sections starting at a and b in the music are 
similar. 

In many cases, it is possible to determine a good 
“explanation” that covers the entire song, e.g. 
ABABCA. One can imagine inferring the length of 
sections, e.g. 8 or 16 measures, and this could be 
extremely helpful for beat tracking. However, not all 
songs have such a clear structure, and we cannot make 
such strong assumptions. For this study, only the paths 
in the similarity matrix are used, but even this small 
amount of structural information can be used to make 
large improvements in beat-tracking performance. 

5 BEAT TRACKING WITH STRUCTURE 
When two sections of music are similar, we expect them 
to have a similar beat structure. This information can be 

combined with the two previous heuristics: that beats 
should coincide with likely beat events and tempo 
changes should be smooth.  

The structure analysis finds similar sections of music 
and an alignment, as shown in Figure 2. The alignment 
path could be viewed as a direct mapping from one 
segment to the other, but an even better mapping can be 
obtained by interpolating over multiple frames. 
Therefore, to map from time t in one segment to another, 
a least-squares linear regression to the nearest 5 points 
in the alignment path is first computed. Then, the time is 
mapped according to this line. 

But how do we use this mapping? Note that if beat 
structures correspond, then mapping from one segment 
to another and advancing several beats should give the 
same result as advancing several beats and then mapping 
to the other segment.1 The formalization of this 
“structural consistency” is now described. 

5.1 Computing Structural Consistency. 

The “structural consistency” function is illustrated in 
Figure 3 and will be stated as Equation 9. The roughly 
diagonal line in the figure represents an alignment path 
between two sections of music starting at a and b. (Note 
that the origins of the time axes are not zero, but close to 
a and b, respectively, to make the figure more compact.) 
The time t1 is the time of the first measure beginning 
after a. This is mapped via the alignment path to a 
corresponding moment in the music u1. Next, we 
advance 4 beats beyond t1. To accomplish this, we use 
the time warp function: �pv,t0(t1), add 4 beats, and then 
map back to time using the inverse function: 
 )4)(( 1,
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Then, t2 is mapped via the alignment path to u2 as shown 
by dashed lines. The resulting time should be consistent 
with u1 plus 4 beats, which is computed in the same way 
as t2: 
 )4)(( 1,
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In practice, there will be some discrepancy between u2 
and the mapping of t2. This is illustrated and labeled 
“error” in Figure 3. 

Having computed an error value for a 4-beat offset, a 
similar procedure is used to compute the error at 8 beats 
and every other measure that falls within the alignment 
path. There may be multiple alignment paths, so all 
errors for these alignment paths are also computed. The 
overall “structural consistency” function is then:  
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where w indicates a range of the song (a “window”) over 
which the function is computed, Pw is the set of 

                                                           
1 We could state further that every beat in one segment should map 
directly to a beat in a corresponding segment, but since alignment may 
suffer from quantization and other errors, this constraint is not 
enforced. Future work should test whether this more direct constraint 
is effective. 

369



  
 
alignment paths that overlap the window w, and Ep,w is 
the set of error values computed for alignment path p 
within window w. Although not mentioned explicitly, 
scw also depends upon the period vector pv as implied by 
Equations 7 and 8. 

t1 time (s)

tim
e 

(s
)

4 beats

8 beats

error

error

4 beats

8 beats

a

b

t2

u1

u2

 

Figure 3. If beat locations are consistent with 
structure, then advancing 4 or 8 beats in one section of 
music and mapping to the corresponding point in 
another section will be equivalent to mapping to the 
corresponding point (u1) first, and then advancing 4 or 
8 beats. 

5.2 Beat Tracking With Structure Algorithm. 

Now we have three functions to guide our beat tracker: 
gfw is the “goodness of fit with time warping” function 
that evaluates how well the likely beat events line up 
with predicted beats, given a period vector that maps 
real time to beats. ts is the “tempo smoothness” function 
that evaluates how well the period vector meets our 
expectation for steady tempo. sc is the structural 
consistency function that measures the consistency of 
beats and tempo across similar sections of music. These 
three functions are simply summed to form an overall 
objective function. Recall that sc is parameterized by a 
window (a starting and ending time); this is set to match 
the window of the beat pattern function used in gfw. 

It remains to describe an algorithm that performs beat 
tracking utilizing these three functions. The algorithm is 
similar to the beat tracking algorithm of Section 3.3 
(among other things, using a similar algorithm will help 
us to isolate and assess the impact of structural 
consistency). We begin with a small window around the 
same t0 found in Section 3.2 and, as before, alternately 
widen the window and perform a gradient descent 
optimization of the period vector pv.  

What is different now is that the existence of music 
structure will force us to “jump” to other locations in the 
song to evaluate the structural consistency function. 
These other sections will need a well-defined period 
vector, and because of the coupling between similar 
sections of music, all similar sections will need to be 

considered when attempting to use gradient descent to 
optimize the objective function. 

The new algorithm uses the concept of “islands,” 
which are simply regions of the song that are relevant to 
the computation. Each island has an associated period 
vector and time offset. The “time warp” function, τ, is 
defined on a per-island basis.  

Initially, there is one island centered on t0, and the 
period vector is only defined within the “shores” of the 
island. When this initial island grows to overlap an 
alignment path (or if the island already overlaps an 
alignment path when it is initialized), the structural 
consistency function will need to examine some other 
place in the song, quite possibly “off the island.” When 
this happens (see Figure 4), a new island is created. It is 
initialized with a small window using an offset and 
period vector that makes it consistent with the initial 
island. 

similar sections of music

initial island new island   

Figure 4. New islands are created when parts of an 
existing island are similar to music elsewhere in the 
song. This allows for the computation and evaluation 
of structural consistency as part of the beat-tracking 
process. 

Computation proceeds in a round-robin fashion, 
looking at each island in turn. The island’s window is 
widened and gradient descent is used to optimize the 
island’s period vector. Then the next island is 
considered. 

At some point, islands will begin to overlap. 
Overlapping islands are merged by consolidating their 
period vectors. Ideally, islands will meet on an exact 
measure boundary, but this does not always happen in 
practice. To avoid large discontinuities, one of the 
vectors is shifted by some integer number of beats so 
that the vectors are maximally consistent at their 
meeting point. When the vectors are merged, beat times 
are preserved and it is assumed that gradient descent will 
fix any remaining inconsistencies. 

Since islands never grow smaller, the algorithm 
eventually terminates with one island covering the entire 
song. At this point, all beat times are determined from 
the single remaining period vector and time origin t0. 

5.3 Implementation. 

The HFC feature extraction is implemented in Nyquist 
[14], and the structure analysis is implemented in 
Matlab, while the beat tracking algorithms are 
implemented in C++. Nyquist is then used to synthesize 
“tap” sounds and combine these with the original songs 
for evaluation. The total CPU time to process a typical 
popular song is on the order of a few minutes. Using a 
compiled language, C++, for the gradient-descent beat 
tracking algorithms is important for speed, but other 
language choices were just for convenience. 
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The beat tracking program logs the current period 
vector and other information so that when the 
computation completes, the user can display a plot of the 
warped and windowed beat pattern(s) against the 
expected beat events. The user can then visualize the 
iterative search and optimization by stepping forward or 
backward in time, and by zooming in or out of various 
regions of the song. This feature proved invaluable for 
debugging and verifying the behaviour of the program. 

6 EVALUATION 
Since beats are a perceptual construct, there is no 
absolutely objective way to determine where beats 
occur. Some listeners may perceive the tempo to be 
twice or half the rate of other listeners. Furthermore, if 
the tempo is slightly fast or slow, it will appear to be 
correct almost half the time, as estimated beats go in and 
out of phase with “true” beats.  

For this study, the goal is to compare beat tracking 
performance with and without the use of structural 
consistency. To evaluate beat tracking, the beat-tracker 
output is used to synthesize audio “taps,” which are 
mixed with the original song. The audio mix is then 
auditioned and subjective judgements are made as to 
when the beat tracker is following the beat and when it is 
not. Tapping on the “upbeat” and/or tapping at twice or 
half the preferred rate are considered to be acceptable; 
however, tapping at a slightly incorrect tempo, causing 
beats to drift in and out of phase (which is a common 
mode of failure) is not acceptable even though many 
predicted beats will be very close to actual (perceived) 
beats. Beat tracking is rated according to the percentage 
of the song that was correctly tracked, and percentages 
from a number of songs are averaged to obtain an 
overall performance score. Although human judgement 
is involved in this evaluation, the determination of 
whether the beat tracker is actually tracking or not seems 
to be quite unambiguous, so the results are believed to 
be highly repeatable. 

Sixteen (16) popular songs were tested. Using the 
basic beat tracking algorithm without structural 
consistency, results ranged from perfect tracking 
through the entire song to total failure. The average 
percentage of the song correctly tracked was 30%. With 
structural consistency, results also ranged from perfect 
to total failure, but the number of almost perfectly 
tracked songs (> 95% correct) doubled from 2 to 4, the 
number of songs with at least 85% correctly tracked 
increased from 2 to 6, and the overall average increased 
from 30% to 59% (p < 0.0034). (See Table 1.) 

7 DISCUSSION 
The results are quite convincing that structural 
consistency gives the beat tracker a substantial 
improvement. One might expect that similar music 
would cause the beat tracker to behave consistently 
anyway, so it is surprising that the structural consistency 
information has such a large impact on performance. 

However, one of the main problems with beat tracking 
in audio is to locate the “likely beat events” that guide 
the beat tracker. Real data is full of sonic events that are 
not on actual beats and tend to distract the beat tracker. 
By imposing structural consistency rules, perhaps 
“random” events are averaged out, essentially bringing 
the law of large numbers into play: structural 
consistency considers more information and ultimately 
allows for better decisions. 

Table 1. Performance of basic beat tracker and 
beat tracker using music structure information. 

 Basic 
Tracker 

Tracker Using 
Music Structure 

Percentage tracked 30 59 
Number tracked at 
least 95% correct 

2 4 

Number tracked at 
least 85% correct 

2 6 

 
Another advantage of music structure is that by 

propagating good tempo information to new “islands,” 
the beat tracker can more successfully approach regions 
of uncertainty between the islands. Looked at another 
way, regions that are difficult to track do not have as 
many opportunities to “throw off” the beat tracker to the 
extent that it cannot recover the correct tempo later in 
the song. To further isolate this factor, one could use the 
islands to determine the order in which beat tracking is 
performed, but ignore the structural consistency function 
sc when optimizing the period vectors. 

7.1 Absolute Quality of Beat Tracker 

One possible criticism of this work is that if the basic 
beat tracker had better performance, structural 
consistency might not be so useful. Are we seeing great 
tracking improvement because the basic tracker is 
entirely inadequate? The basic beat tracker is based on 
recent published work that claims to be successful. 
Readers should recognize that correlating the beat 
pattern function with beat events is closely related to 
autocorrelation and wavelet techniques used by other 
beat induction programs [1] to detect periodicity. My 
method of widening the beat pattern window and then 
optimizing the beat period vector is closely related to 
other methods of entrainment for beat tracking. While 
we do not have shared standards for measuring beat-
tracking performance, it seems likely that any technique 
that can substantially improve the basic beat tracker will 
offer some improvement to most others.  

For comparison, Scheirer’s beat tracker [15] was used 
to identify beats in the same test set of songs. The results 
are difficult to interpret because Scheirer’s program 
does not actually fit a single smooth tempo map to the 
data. Instead, there are multiple competing internal 
tempo hypotheses that can switch on or off at any time. 
As a result, the output beats are often correct even when 
there is no underlying consistent tempo. In many cases, 
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however, it seems that a little post-processing could 
easily recover a steady tempo. Giving the output this 
subjective benefit of the doubt, Scheirer’s tracker 
correctly tracked about 60% of the songs. This is 
significantly better than my baseline tracker, and 
essentially the same as my tracker using music structure.  

This may indicate that the baseline tracker could be 
improved through tuning. It may also indicate that 
searching for periodicity independently in different 
frequency bands (as in the Scheirer tracker) is 
advantageous. A third possibility is that using 
continuous features rather than discrete peaks may be 
important; however, modifying the baseline tracker to 
use continuous hfc values appears not to make any 
significant difference. Much more investigation is 
needed to understand the many factors that affect beat 
tracker performance in general. This investigation was 
designed to explore only one factor, the use of music 
structure, while keeping other factors the same. 

7.2 The Non-Causal Nature 

This algorithm is non-causal. It searches for a strong 
beat pattern as a starting point and expands from there. 
When music structure is considered, the algorithm jumps 
to similar musical passages before considering the rest 
of the music. Certainly, human listeners do not need to 
perform multiple passes over the music or jump from 
one location to another. However, musical memory and 
familiarization are part of the listening process, and 
composers use repetition for good reasons. Although 
inspired by intuitions about music listening, this work is 
not intended to model any more than a few interesting 
aspects of music cognition. 

7.3 Other Comments 

Because the goal of this work was to explore the use 
of structure in beat tracking, I did not try the system on 
jazz or classical music, where the repetitions required 
for structure detection are less common. Most of the test 
set is music with drums. Further work will be needed to 
expand these ideas to work with different types of music 
and to evaluate the results. 

The main goal of this work is to show that music 
structure and other high-level analysis of music can 
contribute to better detection of low-level features. 
Ultimately, there should be a bi-directional exchange of 
information, where low-level features help with high-
level recognition and vice-versa. For example, beat and 
tempo information can help to segment music, and 
music segmentation [16-20] can in turn help to identify 
metrical structure. Metrical structure interacts closely 
with beat detection. One of the fascinating aspects of 
music analysis is the many levels of interconnected 
features and structures. Future automatic music analysis 
systems will need to consider these interconnections to 
improve performance. This work offers a first step in 
that direction. 

8 SUMMARY AND CONCLUSIONS 
Two beat-tracking algorithms were presented. Both use 
high frequency content to identify likely beat events in 
audio data. The first is a basic algorithm that begins by 
searching for a good fit between the likely beat event 
data and a windowed periodic “beat pattern” function. 
After establishing an initial tempo and phase, the beat 
pattern window is gradually widened as gradient descent 
is used to find a smoothly varying tempo function that 
maps likely beat events to predicted beat locations. 

A second algorithm is based on the first, but adds the 
additional constraint that similar segments of music 
should have corresponding beats and tempo variation. 
The beat tracking algorithm is modified to incorporate 
this heuristic, and testing shows a significant 
performance improvement from an average of 30% to an 
average of 59% correctly tracked. 

This work is based on the idea that human listeners 
use many sources of information to track beats or tap 
their feet to music. Of course, low-level periodic audio 
features are of key importance, but also high-level 
structure, repetition, harmonic changes, texture, and 
other musical elements provide important “musical 
landmarks” that guide the listener. This work is a first 
step toward a more holistic approach to music analysis 
and in particular, beat tracking. I have shown that 
musical structure can offer significant performance 
improvements to a fairly conventional beat tracking 
algorithm. It is hoped that this work will inspire others 
to pursue the integration of high-level information with 
low-level signal processing and analysis to build more 
complete and effective systems for automatic music 
understanding. 
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