

TOWARD AUTOMATED HOLISTIC BEAT TRACKING,
MUSIC ANALYSIS, AND UNDERSTANDING

 Roger B. Dannenberg
 School of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213 USA

rbd@cs.cmu.edu

ABSTRACT
Most music processing attempts to focus on one
particular feature or structural element such as pitch, beat
location, tempo, or genre. This hierarchical approach, in
which music is separated into elements that are analyzed
independently, is convenient for the scientific researcher,
but is at odds with intuition about music perception.
Music is interconnected at many levels, and the interplay
of melody, harmony, and rhythm are important in
perception. As a first step toward more holistic music
analysis, music structure is used to constrain a beat
tracking program. With structural information, the simple
beat tracker, working with audio input, shows a large
improvement. The implications of this work for other
music analysis problems are discussed.

Keywords: Beat tracking, tempo, analysis, music
structure

1 INTRODUCTION
Music is full of multi-faceted and inter-related
information. Notes of a melody fall into a rhythmic grid,
rhythm is hierarchical with beats, measures, and phrases,
and harmony generally changes in coordination with
both meter and melody. Although some music can be
successfully decomposed into separate dimensions of
rhythm, harmony, melody, texture, and other features,
this kind of decomposition generally loses information,
making each dimension harder to understand.

In fact, it seems that musicians deliberately
complicate individual dimensions to make them more
interesting, knowing that listeners will use other
information to fill in the gaps. Syncopation can be
exaggerated when the tempo is very steady, but we hear
less syncopation when tempo is more variable.
Confusing rhythms are often clarified by an
unmistakeable chord change on the first beat of a

measure. Repetition in music often occurs in some
power-of-two number of measures, providing clear
metrical landmarks even where beats and tempo might
be ambiguous.

It is easy to notice these interrelationships in music,
but difficult to take advantage of them for automatic
music analysis. If everything depends on everything
else, where does one start? If perception is guided by
expectations, will we fail to perceive the “truth” when it
is unexpected? Music analysis produces all kinds of data
and representations. How can the analysis of one
dimension of music inform the analysis of another, given
the inevitable errors that will occur? These are all
difficult questions and certainly will form the topic of
much future research.

This paper describes a small step in this general
direction. I will show how information about music
structure can be used to inform a beat tracker. In all
previous beat trackers known to the author, an algorithm
to identify beats is applied uniformly, typically from the
beginning to the end of a work. Often times, beat
trackers have a tendency to be distracted by syncopation
and other musical complexities, and the tracker will drift
to some faster or slower tempo, perhaps beating 4
against 3 or 3 against 4.

In contrast, when musical structure is taken into
account, the beat tracker can be constrained such that
when a beat is predicted in one section of music, a beat
is also predicted at the corresponding place in all
repetitions of that section of music. In practice, these are
not absolute constraints but probabilistic tendencies that
must be balanced against two other goals: to align beats
with sonic events and to maintain a fairly steady tempo.

It might seem that if a beat tracker can handle one
section of music, it can handle any repetition of that
section. If this were the case, the additional constraint of
music structure would not help with the beat-tracking
problem. Tests with real data, however, show a dramatic
improvement when music structure is utilized. How can
this be? A simple answer is that the input data is audio,
and the detection of likely beat events is error prone.
Music structure helps the beat tracker to consolidate
information from different sections of music and
ultimately do a better job. This will be explained in
greater detail in the discussion section.

The next section describes related work. Then, in
Section 3, I explain the basic beat tracker used for

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
com-mercial advantage and that copies bear this notice and the
full citation on the first page.

© 2005 Queen Mary, University of London

366

experiments. In Section 4, music structure analysis is
described, and the additions to the beat tracker to use
structure information are described in Section 5. In
Section 6, I describe tests performed and the results.
Section 7 presents a discussion, which is followed by a
summary and conclusions.

2 RELATED WORK
The literature has many articles on beat tracking.
Gouyon and Dixon have written an excellent overview
with an extensive list of references. [1] For this work, I
relied especially on the HFC (high frequency content)
feature [2] for detecting likely beat events, as used by
Davies and Plumbley [3] and also by Jensen and
Andersen [4]. The general structure of the beat tracker is
related to that of Desain and Honing [5] in that the
tracker relies on gradient descent. Desain and Honing
adjust the times of actual beat events to fit an expected
model, whereas my system adjusts a tempo estimate to
fit the actual times.

This work is not unique in attempting to incorporate
music structure and additional features to analyze music.
In particular, Goto and Muraoka used knowledge of
drum beat patterns to improve beat tracking of popular
(rock) music with drums [6], and Goto used some music
classification techniques to handle music with drums
differently from music without drums [7].

3 THE BASIC BEAT TRACKER
In order to show that music structure can help with the
beat tracking problem, I first constructed a “baseline”
beat tracker to measure performance without any music
structure information. This beat tracker is based on
state-of-the-art designs, but it has not been carefully
tuned.

As is common, the beat tracker consists of two parts.
The first part computes likely beat events from audio.
Likely beat events are time points in the audio that
suggest where beats might occur. These are represented
as a discrete set of (time, weight) pairs. The second part
attempts to identify more-or-less equally spaced beats
that correspond to the likely beat events. Not all likely
beat events will turn out to be beats, and some beats will
not coincide with a likely beat event. The baseline beat
tracker attempts to balance the two criteria of steady
tempo and good matches to likely beat events.

3.1 Likely beat event detection.

One might expect that beats would be simple to
detect in popular music, given the typically heavy-
handed rock beat. Unfortunately, the loud snare hits are
not so different spectrally from rhythm guitar chords or
even vocal onsets and consonants. Furthermore, much
popular music exhibits heavy dynamic compression,
giving the music an almost constant energy level, so
looking for peaks in the amplitude envelope is unreliable

for detecting beats. High frequency content (HFC) [2]
and spectral flux [8] are alternatives to RMS amplitude.

I use an HFC feature to detect likely beat events.
Music audio is mixed from stereo to a single channel
and downsampled to 16 kHz. FFTs of size 1024 are
taken using a Hanning window applied to each (possibly
overlapping) segment of 512 samples to yield a
sequence Xn of complex spectra1. The per-frame HFC
feature is the sum of the magnitudes weighted by the
square of the bin number [4]:

�
=

⋅=
512

1

2][
i

nn iiXhfc

 (1)

where |Xn[i]| is the magnitude of the ith bin of the nth

frame. Note that some authors use the square of the
magnitude and others weight linearly with bin number.
To detect events, some thresholding is necessary. A
running average is computed as:
 11 1.09.0 −− ⋅+⋅= nnn hfcavgavg (2)

The ratio hfcn/avgn exhibits peaks at note onsets, drum
hits, and other likely beat locations. Unfortunately, even
after normalizing by a running average, there will be
long stretches of music with no prominent peaks. This
problem is solved by a second level of thresholding
which works as follows:

�
�
�

⋅
>⋅=

=

+ otherwise 99.0
 if))95.0,max(,2min(

/

1
n

nnnn
n

nnn

thr
thrrrthr

thr

avghfcr (3)

Thus, the nominal threshold is 2, which captures every
strong peak (rn > 2) that occurs. When strong peaks are
not present, the threshold adapts to detect smaller peaks.
Whenever the threshold thrn is exceeded by rn, the time
is recorded along with rn, which serves as a weight in
further computation. (In the next section, these pairs of
(n/framerate, rn) will be referred to as (ti, wi), a
time/weight pair.) Since some peaks are broad and span
multiple samples, no further times are recorded until rn
dips below the threshold.

The adaptive median threshold method [9] offers an
alternative method for picking peaks from hfcn. This
method essentially replaces avgn with a local median
value of hfcn, and it does not adapt when peaks are close
to the median.

3.2 Beat tracking: initialization.

The beat tracking algorithm works from an initial beat
location and tempo estimation, so the next step is to
search for good initial values. This is not an on-line or
real-time algorithm, so the entire song can be searched
for good starting values. It is assumed that the likely
beat events will be highly correlated with a “beat
pattern” function shown at the top of Figure 1. This

1 A step size of 64, yielding a frame rate of 250 Hz, was used to
minimize any time quantization effects. However, there does not
appear to be any significant difference when using even the lowest
frame rate tried, 31.25 Hz.

367

pattern represents the expected locations of quarter notes
(full peaks) and eighth notes (half peaks), and is biased
so that the integral is zero. The pattern is not meant to
model a specific musical pattern such as a drum pattern.
It merely models alternating strong and weak beats at a
fixed tempo, and only this one pattern is used. The
pattern is stretched in 2% increments from a beat period
of 0.3s (200 bpm—beats per minute) to 1.0s (60 bpm)1.
At each tempo, the function is shifted by 5 increments of
1/5 beat. Given a tempo and shift amount, the “goodness
of fit”, gf, to the data is given by:

� ⋅−−=
i

ii wttbptgf)/)((),,(00 φρφρ

(4)

where t0 is used to center the beat pattern over some
interior point in the song, � is the period, φ is the shift
(in beats), bp is the beat pattern function (top of Figure
1), and (ti, wi) are the likely beat event times and weights
calculated in Section 3.1.2

Figure 1. Beat patterns used to search for initial
beat location and tempo.

Each configuration of tempo and shift is further
refined using a gradient descent algorithm to find the
best local fit to the data. Then the peaks of the beat
pattern function are sharpened as shown in the lower
half of Figure 1 to reduce the weight on outliers, and the
gradient descent refinement is repeated.

All this estimates a tempo and offset for a general
neighborhood in the song near t0. We want to find a
place where beats are strong and the data is as
unambiguous as possible, so we estimate the tempo and
beat offset at 5 second intervals (t0=5, 10, 15, …)
throughout the entire song. The values that maximize gf
are used to initialize the beat tracker.

3.3 Beat tracking.

Beat tracking is accomplished by extending the idea of
the beat pattern function and gradient decent. Imagine
broadening the window on the beat pattern function
(Figure 1) to expose more peaks and using gradient
decent to align the function with increasingly many
likely beat events. This is the general idea, but it must be
modified to allow for slight tempo variation.

Tempo (and period) is assumed to be constant within
each 4-beat measure, so a discrete array of period values
serves to record the time-varying tempo. Given a vector

1 These are, of course, parameters that could be changed to accept a
larger range of tempi. In practice, the tracker will tend to find multiples
or submultiples when the “correct” tempo lies out of range.
2 Note that we can consider the entire, continuous HFC signal simply
by including every sample point rn in the set of data points (ti, wi). At
least on a small sample of test data, this does not improve
performance.

of beat periods, pv, and an origin, t0, it is not difficult to
define a function from time (in seconds) to beat (a real
number). Call this the “time warp” function �pv, t0(t). The
goodness of fit function can then be modified to
incorporate this “time warping:”

� ⋅=
i

iitpv wtbptpvgfw))((),(
0,0 τ

(5)

This function maps each likely beat event from time to
beat, then evaluates the beat pattern at that beat. Recall
that the beat pattern has peaks at integer beat and sub-
beat locations.

If the only criterion was to match beats, we might see
wild tempo swings to fit the data, so we add a “tempo
smoothness” that penalizes tempo changes:

))
)(
)(

2,1.0,0(ln()(
1

1�
−
−

+
−⋅=

i ii

ii
pvpv
pvpv

gausspvts

(6)

where gauss(µ, σ, x) is the Gaussian with mean µ and
standard deviation σ, evaluated at x.

The beat tracking algorithm performs a gradient
descent to fit the predicted beats to the likely beat
events. The goal is to optimize the sum of gfw and ts,
which represent a good fit to the beat pattern and a
smooth tempo curve. Notice, however, that the beat
pattern function shown in Figure 1 rapidly goes to zero,
so likely beat events outside of a small window will be
ignored. Although not described in detail, the beat
pattern bp consists of a periodic beat pattern multiplied
by a window function. The window function can be
widened to consider more beats.

The beat tracking algorithm alternately widens the
window function for the beat pattern to consider a few
more beats at the left and right edges of the window.
Then, gradient descent is used to make slight
adjustments to the period vector (tempo curve), possibly
taking into account more likely beat events that now fall
within the wider window. This alternation between
widening the window and gradient descent continues
until the window covers the entire song.

3.4 Beat tracking performance.

As might be expected, this algorithm performs well
when beats are clear and there is a good correspondence
between likely beat events and the “true” beat. In
practice, however, many popular songs are full of high
frequency content from drums, guitars, and vocals, and
so there are many detected events that do not correspond
to the beat pattern. This causes beat tracking problems.
In particular, it is fairly common for the tempo to
converge to some integer ratio times the correct tempo,
e.g. 4/3 or 5/4. This allows the beat pattern to pick up
some off-beat accents as well as a number of actual
downbeat and upbeat events.

One might hope that the more-or-less complete search
of tempi and offsets used to initialize the beat tracker
might be used to “force a reset” when the tempo drifts
off course. Unfortunately, while the best match overall
usually provides a good set of initial values, the best

368

match in the neighbourhood of any given time point is
not so reliable. Often, it is better not to reset the beat
tracker when it disagrees with local beat information.

Human listeners can use harmonic changes and other
structural information to reject these otherwise plausible
tempi, and we would like to use structural information to
improve automatic beat tracking, perhaps in the same
way. The next two sections look at ways of obtaining
structure and using structure to guide beat tracking.

4 STRUCTURAL ANALYSIS
Previous work on structural analysis identified several
approaches to music analysis. [10] This work aimed to
find “explanations” of songs, primarily in the form of
repetition, e.g. a standard song form is AABA. For this
study, I use the chroma vector representation [11],
which is generally effective for the identification of
harmony and melody. [12] The chroma vector is a
projection of the discrete Fourier transform magnitude
onto a 12-element vector representing energy at the 12
chromatic pitch classes. [13]

A self-similarity matrix is constructed from chroma
vectors and a distance function: every chroma frame is
compared to every other chroma frame. Within this
matrix, if music at time a is repeated at time b, there will
be roughly diagonal paths of values starting at locations
(a, b) and (b, a), representing sequences of highly
similar chroma vectors and extending for the duration of
the repetition. (See Figure 2.)

b

b

a

a

Figure 2. Paths of high similarity in the similarity

matrix. Sections starting at a and b in the music are
similar.

In many cases, it is possible to determine a good
“explanation” that covers the entire song, e.g.
ABABCA. One can imagine inferring the length of
sections, e.g. 8 or 16 measures, and this could be
extremely helpful for beat tracking. However, not all
songs have such a clear structure, and we cannot make
such strong assumptions. For this study, only the paths
in the similarity matrix are used, but even this small
amount of structural information can be used to make
large improvements in beat-tracking performance.

5 BEAT TRACKING WITH STRUCTURE
When two sections of music are similar, we expect them
to have a similar beat structure. This information can be

combined with the two previous heuristics: that beats
should coincide with likely beat events and tempo
changes should be smooth.

The structure analysis finds similar sections of music
and an alignment, as shown in Figure 2. The alignment
path could be viewed as a direct mapping from one
segment to the other, but an even better mapping can be
obtained by interpolating over multiple frames.
Therefore, to map from time t in one segment to another,
a least-squares linear regression to the nearest 5 points
in the alignment path is first computed. Then, the time is
mapped according to this line.

But how do we use this mapping? Note that if beat
structures correspond, then mapping from one segment
to another and advancing several beats should give the
same result as advancing several beats and then mapping
to the other segment.1 The formalization of this
“structural consistency” is now described.

5.1 Computing Structural Consistency.

The “structural consistency” function is illustrated in
Figure 3 and will be stated as Equation 9. The roughly
diagonal line in the figure represents an alignment path
between two sections of music starting at a and b. (Note
that the origins of the time axes are not zero, but close to
a and b, respectively, to make the figure more compact.)
The time t1 is the time of the first measure beginning
after a. This is mapped via the alignment path to a
corresponding moment in the music u1. Next, we
advance 4 beats beyond t1. To accomplish this, we use
the time warp function: �pv,t0(t1), add 4 beats, and then
map back to time using the inverse function:
)4)((1,

1
,2 00

+= − tt tpvtpv ττ (7)

Then, t2 is mapped via the alignment path to u2 as shown
by dashed lines. The resulting time should be consistent
with u1 plus 4 beats, which is computed in the same way
as t2:
)4)((1,

1
,2 00

+= − uu tpvtpv ττ (8)

In practice, there will be some discrepancy between u2
and the mapping of t2. This is illustrated and labeled
“error” in Figure 3.

Having computed an error value for a 4-beat offset, a
similar procedure is used to compute the error at 8 beats
and every other measure that falls within the alignment
path. There may be multiple alignment paths, so all
errors for these alignment paths are also computed. The
overall “structural consistency” function is then:

� �
∈ ∈

=
w wpPp Ee

w egausssc
,

),2.0,0(

(9)

where w indicates a range of the song (a “window”) over
which the function is computed, Pw is the set of

1 We could state further that every beat in one segment should map
directly to a beat in a corresponding segment, but since alignment may
suffer from quantization and other errors, this constraint is not
enforced. Future work should test whether this more direct constraint
is effective.

369

alignment paths that overlap the window w, and Ep,w is
the set of error values computed for alignment path p
within window w. Although not mentioned explicitly,
scw also depends upon the period vector pv as implied by
Equations 7 and 8.

t1 time (s)

tim
e

(s
)

4 beats

8 beats

error

error

4 beats

8 beats

a

b

t2

u1

u2

Figure 3. If beat locations are consistent with
structure, then advancing 4 or 8 beats in one section of
music and mapping to the corresponding point in
another section will be equivalent to mapping to the
corresponding point (u1) first, and then advancing 4 or
8 beats.

5.2 Beat Tracking With Structure Algorithm.

Now we have three functions to guide our beat tracker:
gfw is the “goodness of fit with time warping” function
that evaluates how well the likely beat events line up
with predicted beats, given a period vector that maps
real time to beats. ts is the “tempo smoothness” function
that evaluates how well the period vector meets our
expectation for steady tempo. sc is the structural
consistency function that measures the consistency of
beats and tempo across similar sections of music. These
three functions are simply summed to form an overall
objective function. Recall that sc is parameterized by a
window (a starting and ending time); this is set to match
the window of the beat pattern function used in gfw.

It remains to describe an algorithm that performs beat
tracking utilizing these three functions. The algorithm is
similar to the beat tracking algorithm of Section 3.3
(among other things, using a similar algorithm will help
us to isolate and assess the impact of structural
consistency). We begin with a small window around the
same t0 found in Section 3.2 and, as before, alternately
widen the window and perform a gradient descent
optimization of the period vector pv.

What is different now is that the existence of music
structure will force us to “jump” to other locations in the
song to evaluate the structural consistency function.
These other sections will need a well-defined period
vector, and because of the coupling between similar
sections of music, all similar sections will need to be

considered when attempting to use gradient descent to
optimize the objective function.

The new algorithm uses the concept of “islands,”
which are simply regions of the song that are relevant to
the computation. Each island has an associated period
vector and time offset. The “time warp” function, τ, is
defined on a per-island basis.

Initially, there is one island centered on t0, and the
period vector is only defined within the “shores” of the
island. When this initial island grows to overlap an
alignment path (or if the island already overlaps an
alignment path when it is initialized), the structural
consistency function will need to examine some other
place in the song, quite possibly “off the island.” When
this happens (see Figure 4), a new island is created. It is
initialized with a small window using an offset and
period vector that makes it consistent with the initial
island.

similar sections of music

initial island new island

Figure 4. New islands are created when parts of an
existing island are similar to music elsewhere in the
song. This allows for the computation and evaluation
of structural consistency as part of the beat-tracking
process.

Computation proceeds in a round-robin fashion,
looking at each island in turn. The island’s window is
widened and gradient descent is used to optimize the
island’s period vector. Then the next island is
considered.

At some point, islands will begin to overlap.
Overlapping islands are merged by consolidating their
period vectors. Ideally, islands will meet on an exact
measure boundary, but this does not always happen in
practice. To avoid large discontinuities, one of the
vectors is shifted by some integer number of beats so
that the vectors are maximally consistent at their
meeting point. When the vectors are merged, beat times
are preserved and it is assumed that gradient descent will
fix any remaining inconsistencies.

Since islands never grow smaller, the algorithm
eventually terminates with one island covering the entire
song. At this point, all beat times are determined from
the single remaining period vector and time origin t0.

5.3 Implementation.

The HFC feature extraction is implemented in Nyquist
[14], and the structure analysis is implemented in
Matlab, while the beat tracking algorithms are
implemented in C++. Nyquist is then used to synthesize
“tap” sounds and combine these with the original songs
for evaluation. The total CPU time to process a typical
popular song is on the order of a few minutes. Using a
compiled language, C++, for the gradient-descent beat
tracking algorithms is important for speed, but other
language choices were just for convenience.

370

The beat tracking program logs the current period
vector and other information so that when the
computation completes, the user can display a plot of the
warped and windowed beat pattern(s) against the
expected beat events. The user can then visualize the
iterative search and optimization by stepping forward or
backward in time, and by zooming in or out of various
regions of the song. This feature proved invaluable for
debugging and verifying the behaviour of the program.

6 EVALUATION
Since beats are a perceptual construct, there is no
absolutely objective way to determine where beats
occur. Some listeners may perceive the tempo to be
twice or half the rate of other listeners. Furthermore, if
the tempo is slightly fast or slow, it will appear to be
correct almost half the time, as estimated beats go in and
out of phase with “true” beats.

For this study, the goal is to compare beat tracking
performance with and without the use of structural
consistency. To evaluate beat tracking, the beat-tracker
output is used to synthesize audio “taps,” which are
mixed with the original song. The audio mix is then
auditioned and subjective judgements are made as to
when the beat tracker is following the beat and when it is
not. Tapping on the “upbeat” and/or tapping at twice or
half the preferred rate are considered to be acceptable;
however, tapping at a slightly incorrect tempo, causing
beats to drift in and out of phase (which is a common
mode of failure) is not acceptable even though many
predicted beats will be very close to actual (perceived)
beats. Beat tracking is rated according to the percentage
of the song that was correctly tracked, and percentages
from a number of songs are averaged to obtain an
overall performance score. Although human judgement
is involved in this evaluation, the determination of
whether the beat tracker is actually tracking or not seems
to be quite unambiguous, so the results are believed to
be highly repeatable.

Sixteen (16) popular songs were tested. Using the
basic beat tracking algorithm without structural
consistency, results ranged from perfect tracking
through the entire song to total failure. The average
percentage of the song correctly tracked was 30%. With
structural consistency, results also ranged from perfect
to total failure, but the number of almost perfectly
tracked songs (> 95% correct) doubled from 2 to 4, the
number of songs with at least 85% correctly tracked
increased from 2 to 6, and the overall average increased
from 30% to 59% (p < 0.0034). (See Table 1.)

7 DISCUSSION
The results are quite convincing that structural
consistency gives the beat tracker a substantial
improvement. One might expect that similar music
would cause the beat tracker to behave consistently
anyway, so it is surprising that the structural consistency
information has such a large impact on performance.

However, one of the main problems with beat tracking
in audio is to locate the “likely beat events” that guide
the beat tracker. Real data is full of sonic events that are
not on actual beats and tend to distract the beat tracker.
By imposing structural consistency rules, perhaps
“random” events are averaged out, essentially bringing
the law of large numbers into play: structural
consistency considers more information and ultimately
allows for better decisions.

Table 1. Performance of basic beat tracker and
beat tracker using music structure information.

 Basic
Tracker

Tracker Using
Music Structure

Percentage tracked 30 59
Number tracked at
least 95% correct

2 4

Number tracked at
least 85% correct

2 6

Another advantage of music structure is that by

propagating good tempo information to new “islands,”
the beat tracker can more successfully approach regions
of uncertainty between the islands. Looked at another
way, regions that are difficult to track do not have as
many opportunities to “throw off” the beat tracker to the
extent that it cannot recover the correct tempo later in
the song. To further isolate this factor, one could use the
islands to determine the order in which beat tracking is
performed, but ignore the structural consistency function
sc when optimizing the period vectors.

7.1 Absolute Quality of Beat Tracker

One possible criticism of this work is that if the basic
beat tracker had better performance, structural
consistency might not be so useful. Are we seeing great
tracking improvement because the basic tracker is
entirely inadequate? The basic beat tracker is based on
recent published work that claims to be successful.
Readers should recognize that correlating the beat
pattern function with beat events is closely related to
autocorrelation and wavelet techniques used by other
beat induction programs [1] to detect periodicity. My
method of widening the beat pattern window and then
optimizing the beat period vector is closely related to
other methods of entrainment for beat tracking. While
we do not have shared standards for measuring beat-
tracking performance, it seems likely that any technique
that can substantially improve the basic beat tracker will
offer some improvement to most others.

For comparison, Scheirer’s beat tracker [15] was used
to identify beats in the same test set of songs. The results
are difficult to interpret because Scheirer’s program
does not actually fit a single smooth tempo map to the
data. Instead, there are multiple competing internal
tempo hypotheses that can switch on or off at any time.
As a result, the output beats are often correct even when
there is no underlying consistent tempo. In many cases,

371

however, it seems that a little post-processing could
easily recover a steady tempo. Giving the output this
subjective benefit of the doubt, Scheirer’s tracker
correctly tracked about 60% of the songs. This is
significantly better than my baseline tracker, and
essentially the same as my tracker using music structure.

This may indicate that the baseline tracker could be
improved through tuning. It may also indicate that
searching for periodicity independently in different
frequency bands (as in the Scheirer tracker) is
advantageous. A third possibility is that using
continuous features rather than discrete peaks may be
important; however, modifying the baseline tracker to
use continuous hfc values appears not to make any
significant difference. Much more investigation is
needed to understand the many factors that affect beat
tracker performance in general. This investigation was
designed to explore only one factor, the use of music
structure, while keeping other factors the same.

7.2 The Non-Causal Nature

This algorithm is non-causal. It searches for a strong
beat pattern as a starting point and expands from there.
When music structure is considered, the algorithm jumps
to similar musical passages before considering the rest
of the music. Certainly, human listeners do not need to
perform multiple passes over the music or jump from
one location to another. However, musical memory and
familiarization are part of the listening process, and
composers use repetition for good reasons. Although
inspired by intuitions about music listening, this work is
not intended to model any more than a few interesting
aspects of music cognition.

7.3 Other Comments

Because the goal of this work was to explore the use
of structure in beat tracking, I did not try the system on
jazz or classical music, where the repetitions required
for structure detection are less common. Most of the test
set is music with drums. Further work will be needed to
expand these ideas to work with different types of music
and to evaluate the results.

The main goal of this work is to show that music
structure and other high-level analysis of music can
contribute to better detection of low-level features.
Ultimately, there should be a bi-directional exchange of
information, where low-level features help with high-
level recognition and vice-versa. For example, beat and
tempo information can help to segment music, and
music segmentation [16-20] can in turn help to identify
metrical structure. Metrical structure interacts closely
with beat detection. One of the fascinating aspects of
music analysis is the many levels of interconnected
features and structures. Future automatic music analysis
systems will need to consider these interconnections to
improve performance. This work offers a first step in
that direction.

8 SUMMARY AND CONCLUSIONS
Two beat-tracking algorithms were presented. Both use
high frequency content to identify likely beat events in
audio data. The first is a basic algorithm that begins by
searching for a good fit between the likely beat event
data and a windowed periodic “beat pattern” function.
After establishing an initial tempo and phase, the beat
pattern window is gradually widened as gradient descent
is used to find a smoothly varying tempo function that
maps likely beat events to predicted beat locations.

A second algorithm is based on the first, but adds the
additional constraint that similar segments of music
should have corresponding beats and tempo variation.
The beat tracking algorithm is modified to incorporate
this heuristic, and testing shows a significant
performance improvement from an average of 30% to an
average of 59% correctly tracked.

This work is based on the idea that human listeners
use many sources of information to track beats or tap
their feet to music. Of course, low-level periodic audio
features are of key importance, but also high-level
structure, repetition, harmonic changes, texture, and
other musical elements provide important “musical
landmarks” that guide the listener. This work is a first
step toward a more holistic approach to music analysis
and in particular, beat tracking. I have shown that
musical structure can offer significant performance
improvements to a fairly conventional beat tracking
algorithm. It is hoped that this work will inspire others
to pursue the integration of high-level information with
low-level signal processing and analysis to build more
complete and effective systems for automatic music
understanding.

9 ACKNOWLEDGEMENTS

The author would like to thank the Carnegie Mellon
School of Computer Science where this work was
performed.

REFERENCES

[1] Gouyon, F. and Dixon, S. "A Review of Automatic
Rhythm Description Systems", Computer Music Journal,
29, 1, (Spring 2005), 34-54.

[2] Masri, P. and Bateman, A. "Improved Modeling of Attack
Transients in Music Analysis-Resynthesis", Proceedings
of the 1996 International Computer Music Conference,
Hong Kong, 1996, 100-103.

[3] Davies, M.E.P. and Plumbley, M.D. "Causal Tempo
Tracking of Audio", ISMIR 2004 Fifth International
Conference on Music Information Retrieval Proceedings,
Barcelona, 2004, 164-169.

[4] Jensen, K. and Andersen, T.H. "Beat Estimation on the
Beat", 2003 IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA), New
Palz, NY, 2003, 87-90.

[5] Desain, P. and Honing, H. "The Quantization of Musical
Time: A Connectionist Approach", Computer Music
Journal, 13, 3, (Fall 1989), 55-66.

372

[6] Goto, M. and Muraoka, Y. "Music Understanding at the

Beat Level: Real-Time Beat Tracking of Audio Signals",
in Rosenthal, D. and Okuno, H. eds. Computational
Auditory Scene Analysis, Lawrence Erlbaum Associates,
New Jersey, 1998.

[7] Goto, M. "An Audio-Based Real-Time Beat Tracking
System for Music with or without Drums", Journal of
New Music Research, 30, 2, (2001), 159-171.

[8] Alonso, M., David, B. and Richard, G. "Tempo and Beat
Estimation of Musical Signals", ISMIR 2004 Fifth
International Conference on Music Information Retrieval
Proceedings, Barcelona, 2004, 158-163.

[9] Bello, J.P., Duxbury, C., Davies, M. and Sandler, M. "On
the Use of Phase and Energy for Musical Onset Detection
in the Complex Domain", IEEE Signal Processing Letters,
11, 6, (June 2004), 553-556.

[10] Dannenberg, R.B. and Hu, N. "Pattern Discovery
Techniques for Music Audio", Journal of New Music
Research, 32, 2, (June 2003), 153-164.

[11] Bartsch, M. and Wakefield, G.H. "Audio Thumbnailing of
Popular Music Using Chroma-based Representations",
IEEE Transactions on Multimedia, 7, 1, (Feb. 2005), 96-
104.

[12] Hu, N., Dannenberg, R.B. and Tzanetakis, G. "Polyphonic
Audio Matching and Alignment for Music Retrieval",
2003 IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA), New
Palz, NY, 2003, 185-188.

[13] Wakefield, G.H. "Mathematical Representation of Joint
Time-Chroma Distributions", International Symposium on

Optical Science, Engineering, and Instrumentation,
SPIE'99, Denver, 1999.

[14] Dannenberg, R.B. "Machine Tongues XIX: Nyquist, a
Language for Composition and Sound Synthesis",
Computer Music Journal, 21, 3, (Fall 1997), 50-60.

[15] Scheirer, E. "Tempo and Beat Analysis of Acoustic Music
Signals", Journal of the Acoustical Society of America,
104, (January 1998), 588-601.

[16] Tzanetakis, G. and Cook, P. "Multifeature Audio
Segmentation for Browsing and Annotation", Proceedings
of the Workshop on Applications of Signal Processing to
Audio and Acoustics (WASPAA), New Paltz, NY, 1999.

[17] Logan, B. and Chu, S. "Music Summarization Using Key
Phrases", Proceedings of the 2003 IEEE International
Conference on Acoustics, Speech, and Signal Processing
Proceedings (ICASSP 2000), Istanbul, Turkey, 2000, II-
749-752.

[18] Foote, J. "Automatic Audio Segmentation Using a
Measure of Audio Novelty", Proceedings of the
International Conference on Multimedia and Expo (ICME
2000), 2000, 452-455.

[19] Aucouturier, J.-J. and Sandler, M. "Segmentation of
Musical Signals Using Hidden Markov Models",
Proceedings of the 110th Convention of the Audio
Engineering Society, Amsterdam, The Netherlands, 2001.

[20] Peeters, G., Burthe, A.L. and Rodet, X. "Toward
Automatic Audio Summary Generation from Signal
Analysis", ISMIR 2002 Conference Proceedings, Paris,
France, 2002, 94-100.

373

