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ABSTRACT 
This paper presents a fuzzy analysis technique for pitch 
class determination that improves the accuracy of key 
finding from audio information. Errors in audio key 
finding, typically incorrect assignments of closely 
related keys, commonly result from imprecise pitch class 
determination and biases introduced by the quality of the 
sound. Our technique is motivated by hypotheses on the 
sources of audio key finding errors, and uses fuzzy 
analysis to reduce the errors caused by noisy detection of 
lower pitches, and to refine the biased raw frequency 
data, in order to extract more correct pitch classes. We 
compare the proposed system to two others, an earlier 
one employing only peak detection from FFT results, 
and another providing direct key finding from MIDI. All 
three used the same key finding algorithm (Chew’s 
Spiral Array CEG algorithm) and the same 410 classical 
music pieces (ranging from Baroque to Contemporary). 
Considering only the first 15 seconds of music in each 
piece, the proposed fuzzy analysis technique 
outperforms the peak detection method by 12.18% on 
average, matches the performance of direct key finding 
from MIDI 41.73% of the time, and achieves an overall 
maximum correct rate of 75.25% (compared to 80.34% 
for MIDI key finding). 
 
Keywords: audio key finding, pitch classes, fuzzy 
analysis, key proximity.  

1 MOTIVATION 
Polyphonic audio key finding has gained interest in 
recent years, with several researchers proposing systems 
for extracting key from audio information [1, 2, 3, 4]. 
Key finding from audio typically requires several steps, 
including pitch class determination from audio 
(sometimes with pitch spelling), and key finding from 
pitch classes. The pitch class determination step 
provides pitch class information from audio signals; 
once the pitch class distribution has been ascertained, 
then a key finding algorithm can use this information to 
determine the key of the excerpt. In order to improve 

the performance of existing systems, it is imperative that 
we should be able to segregate the sources of errors and 
improve on each module of the system.   

In this paper, it is our goal to examine pitch class 
determination for key finding, to study the sources of 
errors, and propose a method that is tailored to reduce 
key finding error from audio signals. To this end, we 
propose a fuzzy analysis technique to refine the pitch 
class distribution extracted from the audio sample in 
order to improve the likelihood of correct key 
identification, and to avoid closely related keys. 

Pitch class determination for audio key finding 
differs in several ways from pitch detection for 
transcription. Key finding is concerned only with 
determining the tonal context and not with identifying 
every individual note. Transcription requires the 
recognition of every single pitch, which includes pitch 
class and register information, and its duration, whereas 
key finding only needs pitch class information. 
Furthermore, contextual information such as key can 
often be assisted by the physical production (for 
example, a musician stressing structurally important 
pitches) and acoustic interactions (for example, the 
strongest harmonics tend to be pitches in the same key) 
of musical sound.  

We have identified several sources of errors in pitch 
class determination for audio key finding. It is 
straightforward to obtain frequency information (pitch 
classes) from audio signals using frequency analysis 
methods such as the Fast Fourier Transform (FFT) [5]. 
Sources of errors in pitch class determination include: 
uneven loudness of pitches, insufficient resolution of 
lower frequency pitches, tuning problems, and the 
harmonic series effect. Although frequency analysis can 
identify all frequencies present in an audio segment, the 
louder pitches will have higher frequency spectrum 
values than others. Pitch perception operates on a 
logarithmic frequency scale, resulting in the fact that 
lower pitches are closer in frequency and hence harder 
to discriminate than higher frequencies. Pitches are 
often described as corresponding to discrete frequency 
values, which is problematic when one encounters 
sounds produced by instruments that are mistuned. Last 
but not least, each tone produced by an instrument 
consists not only of the fundamental frequency, but also 
a sequence of frequencies that are the effects of the 
harmonic series.  
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Based on experimental results, we found that audio 
key finding, more frequently than symbolic key finding, 
results in the mislabeling of pieces as being in keys 

296



   
 
closely related to the correct one. Such errors occur 
because closely related keys have large overlapping 
pitch class sets. For example, the relative major/minor 
keys share exactly the same pitch classes, the only 
difference being their typical distributions. A slight 
tipping of the balance of pitch class distributions can 
lead to close but incorrect answers. The most common 
error in audio key finding is the mislabeling of a sample 
as being in a key that is the dominant of the actual one, 
for example, labeling a sample in C major as G major.  
Two keys related in this manner share all but one pitch 
class, that of the leading tone (or the seventh note in its 
scale).  The pitch classes {C, G, E and F} feature 
strongly in a typical distribution of pitch classes in C 
major; the corresponding pitch class set for G major is 
{G, D, B and C}.  Because both G and C are important 
pitches in G major, a small change in the pitch class 
distribution can result in G being selected as the key.  In 
audio key finding, the problem is exacerbated by the 
fact that the dominant is typically the strongest 
harmonic of a tone other than the pitch class of the tone 
itself. Rather than eliminating the harmonics that help 
constrain the answers to closely related keys, we focus 
on reducing noise in the data and on the refining of the 
pitch class distribution to improve key recognition. 

Our approach to this problem uses a fuzzy analysis 
technique to adjust the pitch class distribution, in light 
of the challenges mentioned above, so as to emphasize 
the correct tonal context for accurate key finding. In 
addition to the use of a fuzzy analysis technique to 
improve pitch class determination, in this paper, we also 
provide a methodology for evaluating the effectiveness 
of various pitch class determination strategies for audio 
key finding.  

Although symbolic key finding has been studied for 
more than a decade and various evaluation 
methodologies have been employed, the evaluation for 
audio key finding, especially the pitch class 
determination part, remains obscure. There are two main 
problems that make the evaluation for audio key finding 
ill-defined. Firstly, the degree of incorrectness of closer 
keys (the dominant, relative, and parallel) is difficult to 
decide. Secondly, it is unclear how one should judge the 
performance of pitch class determination methods when 
one does not require exact pitch detection. 

The difficulty of key finding varies widely across 
musical styles. Using the key denoted by the composer 
in the title, when such an answer exists, is only useful 
up to a degree. Consider a symphony with multiple 
movements: the piece stays in the main key only in the 
first and last movements. The second and third 
movements are typically composed in other keys. Even 
in the first movement, it is not uncommon for the piece 
to modulate to closely related keys, such as the 
dominant and relative. Furthermore, in classical music, 
the language gets progressively more complicated over 
the course of time. For example, the music in the late 
Romantic period is tonally much more diverse and 
complex than that in the Baroque period. The increasing 
complexity of tonal structure in pieces poses another 
challenge for evaluation of audio key finding. However, 

the eradication of closer key errors in single-key 
examples must to be solved before audio key finding 
can advance further to account for modulations. 

In this paper, we provide an evaluation methodology 
for pitch class determination in audio key finding by 
comparing the key assignment results for symbolic and 
audio music using Chew’s Spiral Array Center of Effect 
Generator (CEG) key finding algorithm (see [6, 7]). The 
test sets for audio are rendered from MIDI so that the 
audio key finding will use exactly the same test set as 
that in MIDI. By using the same key finding algorithm 
and test sets, we can compare the results of MIDI and 
audio key finding to evaluate the performance of the 
proposed pitch class determination technique.  

We used our system to test 410 pieces of classical 
music across a wide spectrum of time periods ranging 
from Baroque to Contemporary. The selection consists 
of a wide range of tonal music so that the aggregate 
results will be as unbiased as possible. Detailed analysis 
of results for each musical period is also provided.  

The remainder of the paper is organized as follows: 
Section 2 provides a literature review of work in audio 
key finding, Section 3 describes the overall system 
diagram and introduces each part of the system, 
including the new fuzzy analysis technique, the 
experimental design and results are presented in Section 
5, and conclusions and future work follow in Section 6. 

2 BACKGROUND 
The approach in this paper differs from previous efforts 
in three ways, the obvious two being the fuzzy analysis 
technique for pitch class determination and the use of the 
Spiral Array CEG algorithm for key finding. The third 
distinguishing feature is the systematic examination of 
the parts of a key finding system, and careful evaluation 
to isolate and measure the improvements provided by 
changes to a particular component. 

Audio key finding systems require two basic 
components: one comprising of some pitch class 
determination method such as the generating of pitch 
class distributions, and another consisting of some key 
finding algorithm that determines the key given a pitch 
class distribution. In this paper, we aim to improve the 
pitch class determination method by using a fuzzy 
analysis technique and to systematically evaluate its 
effectiveness by comparing it to symbolic key finding. 
Most research in audio key finding fails to discriminate 
among the sources of errors, reporting only the overall 
system’s key finding results [1, 2, 4].   

In Gómez [1] and in Gómez and Herrera [2], the 
authors detected pitches using thrice the standard 
resolution of the pitch frequency spectrum of the FFT 
method, and distributed the frequency values among the 
adjacent frequency bins using a weighting function to 
reduce boundary errors. They generated a Harmonic 
Pitch Class Profile as input to Krumhansl and 
Schmuckler’s (K-S) key finding method [8]. Their 
template pitch class profile gives the dominant a higher 
weight than the tonic, a counterintuitive assignment. 
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They reported an overall correct rate of 66.1% when 
testing on 833 pieces of classical and jazz pieces [2].  

Pauws [4] incorporated rules for avoiding noise and 
emphasizing pitch loudness in his pitch class 
determination method, and applied the K-S method to 
generate the key. Pauws used 237 classical piano 
sonatas as the test set and his method resulted in a 
correct rate of 59.1% within 5 seconds, and achieved a 
maximum correct rate of 66.2% within 15 seconds.  

It is unclear if the errors reported by the authors of 
these two audio key finding systems are due in larger 
part to their pitch class determination techniques, or to 
the key finding algorithm.  The two systems differ 
primarily in the pitch class determination step, in the 
way in which the systems generate the pitch class 
profile for the standard FFT results.  Both used the K-S 
probe tone method [8] for key finding, with Gómez 
using a modified template profile. 

In 1996, Izmirli and Bilgen presented a model that 
analyses tonal context as a continuous function [3]. 
They used a constant Q transform to generate pitch 
classes and proposed a leaky integrator based on the K-
S model to determine the tonal center. However, in their 
study, only two music excerpts are evaluated, a less than 
representative sample size. 

 There exists only a limited number of models for key 
finding. In 1986, Krumhansl and Schmuckler (K-S 
model) [8] proposed the probe tone profile method that 
matches pitch duration profiles to template pitch class 
profiles for major and minor keys, acquired from user 
ratings of probe tone experiments. The key is 
determined as the one with the highest correlation value. 
In 1999, Temperley improved upon the K-S method by 
modifying the template pitch class profiles through 
musical reasoning [9]. Temperley modified the profiles 
to emphasize the differences between diatonic and 
chromatic scales, and also adjusted the weights of the 
forth and seventh pitches so as to differentiate the keys 
with highly similar pitch class sets.  

In this paper, we employ the Spiral Array CEG 
algorithm proposed by Chew [6, 7] to determine key for 
MIDI and audio. The Spiral Array Model is a 3-
dimensional model that represents pitches, intervals, 
chords and keys in the same space for easy comparison. 
On the Spiral Array, pitches are represented as points on 
a helix, and adjacent pitches are related by intervals of 
perfect fifths, while vertical neighbors are related by 
major thirds. In the CEG algorithm, key selection is 
performed by summarizing musical information as a 
spatial point in the interior of the spiral and by 
conducting a nearest neighbor search in the Spiral Array 
space. Although the K-S model is one of the most 
widely used key finding methods, the Spiral Array CEG 
model has been demonstrated to achieve better key 
finding results using symbolic data sets [6, 7]. We 
implemented both the Spiral Array CEG method and the 
K-S model in an earlier audio key finding system that 
employed simply peak detection from FFT [10]. We 
observed that the CEG method again consistently 
outperformed the K-S method with few exceptions. In 
this paper, we will use the Spiral Array CEG method as 

a constant among the three systems we test: key finding 
from MIDI, key finding from audio using only peak 
detection, and key finding from audio using peak 
detection and fuzzy analysis. 

3 SYSTEM DESCRIPTION 
In our proposed audio key finding system, we employ a 
fuzzy analysis technique, with adaptive weights and 
periodic cleanup, to generate a pitch class distribution 
that reduces closer-key errors in key finding. Figure 1 
shows a diagram of the system for polyphonic audio key 
finding.  

The system consists of two major parts. The first 
generates a distribution of weights for the twelve pitch 
classes from audio signals, as shown in the upper 
dashed box in Figure 1. We use the FFT to extract the 
frequency information, and employ the peak detection 
method described in [10] and in Section 3.1. We apply a 
fuzzy analysis technique (detailed in Section 3.2) and a 
periodic cleanup procedure (explained in Section 3.3) to 
generate refined weight distributions for the key finding 
algorithm in order to increase the likelihood of 
obtaining the correct key. This fuzzy analysis method 
will be described in detail in Section 3. 

The second part of the system contains the key 
finding algorithm. This module consists of pitch 
spelling and key finding. To represent pitch class 
information for comparison to key representations, we 
use Chew’s Spiral Array Model [6, 7]. The pitch 
spelling method for mapping numeric pitch classes to 

Figure 1. Graph of audio key finding system.
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letter name pitch class representations on the pitch spiral 
is described in [11] and [12].  Finally, we employ the 
CEG algorithm [6, 7, 13] to determine the key. 

In Section 4, we will compare three systems for key 
finding.  The first, key finding from MIDI is contained 
within the lower dashed box in Figure 1: this system 
takes MIDI files as input, generates pitch classes, and 
uses the Spiral Array CEG algorithm to determine the 
key. The second system performs audio key finding 
using the FFT and a peak detection method [10] in the 
pitch class determination phase (henceforth referred to 
as the audio key finding with peak detection); this 
system is represented by all modules in the diagram 
except for the gray boxes in Figure 1. The third is the 
audio key finding system with the fuzzy analysis 
technique and periodic cleanup procedure. The entire 
system is shown in Figure 1. 

In the following sections we describe the methods 
designed to reduce noise and refine the pitch class 
distribution in the pitch class determination phase.  

3.1 Pitch frequency detection from audio signal 

We use standard FFT with the peak detection method 
described in [10] to extract the corresponding frequency 
magnitude for each pitch. The peak detection method 
selects the local maximum within the frequency range 
pre-defined for each pitch.  In [10], we summed these 
maximum values for all pitches in a class to get the pitch 
class distribution. Instead of directly using the local 
maximum values to generate the pitch class distributions, 
here, we apply a fuzzy analysis technique (described in 
the next section) to refine the local maxima so as to 
obtain more accurate pitch class distributions that avoid 
closer-key errors.  

3.2 Fuzzy analysis with adaptive level weights 

We use a fuzzy analysis technique to clarify pitch 
information from the frequency spectrum. Pitch class 
detection from audio signal is inherently noisy for the 
reasons outlined in Section 1 – uneven loudness of 
pitches, harmonic series effect, and insufficient 
resolution in lower frequencies, increase the difficulty of 
recognizing polyphonic audio pitch – resulting in the 
incorrect detection of closely related keys, such as the 
dominant, relative and parallel keys. The errors also 
accumulate, thus worsening the performance of key 
finding systems over time.  

Our method consists of three steps. The first two aims 
to clarify information in the lower frequencies. The fist 
step, detailed in Section 3.2.1, uses knowledge of the 
overtone series to clarify membership in the lower 
ranges. The second step, described in Section 3.2.2, 
scales the FFT results in each pre-defined range by the 
density of the signal in that range so as to properly 
acknowledge the presence of important pitches in that 
frequency range. This second step, called adaptive level 
weighting, is particularly effective in the clarifying of 
low pitches in late romantic music, especially music that 
begins almost exclusively in the low frequency ranges.  
After the pitch values have been folded into pitch class 

values, we employ the third and final step to refine the 
pitch class distribution. The third step, outlined in 
Section 3.2.3, sets all normalized pitch class values 0.2 
and below to zero, and all values 0.8 and above to one. 

The reason that we use fuzzy analysis is that one can 
view the results of an FFT analysis as a fuzzy 
description, not a calculated probability, of the 
likelihood that a pitch is played. The fuzzy analysis 
technique provides several advantages: (1) it generates 
more accurate weight distributions for pitch classes to 
determine the correct key, instead of closely related ones; 
and, (2) By employing adaptive level weights, the 
technique is robust against the impact of different 
musical arrangements (the varying of registers and 
instrumentation) and styles. 

3.2.1 Clarifying low frequencies 

In Step 1, we use the overtone series as the basis for 
fuzzy analysis to clarify pitches of frequencies below 
261 Hz (the pitch C4). Pitch frequencies are defined on a 
logarithmic scale; thus, the frequencies of lower pitches 
are more closely spaced than higher ones. The mapping 
of lower frequencies to their pitches, defined by discrete 
frequency ranges, is particularly noisy and error prone. 
In contrast, assignment of higher-frequencies to pitches 
is more accurate because of the relatively wider 
frequency ranges. Therefore, we use the presence of the 
first overtone to determine and to refine the weights for 
lower pitches. 

We use the idea of the membership value in fuzzy 
logic to represent the likelihood that a pitch has been 
sounded. The membership values are based on the FFT 
results after peak detection. We set the highest peak, 
Pmax, the pitch membership value of the largest FFT 
result, to one, which one can interpret as assuming that 
this pitch is definitely sounded. We get the membership 
values for all other pitches by dividing their peak values 
by Pmax. We set the values less than 0.1 to zero to 
eliminate some noise. The value 0.1 was chosen after 
performing some preliminary tests. Assume that Pi,j 
represents the pitch of class j at register i, for example, 
middle C (C4) is P4,0. Let FFT(Pi,j) be the local peak for 
pitch Pi,j after the FFT. Then, the membership value for 
Pi,j is defined as: 

    mem ,                              (1) max,, P/)()( jiji PFFTP =
where i = 2, 3, 4, 5, 6, and j = 1…12, which allows for 
pitches ranging from C2 (65 Hz) to B6 (2000 Hz). 

By examining the membership values of the pitch an 
octave above, the pitch one half-step above and its first 
overtone, we can remove the common errors caused by 
insufficient frequency resolution and discrete frequency 
definition in lower pitches. The method nullifies the 
membership value of the lower pitch for which the pitch 
one half step above has a membership value higher than 
its own, or the pitch one octave higher or the pitch one 
half step and one octave higher has a membership value 
higher than its own. A reason for this nullifying step is 
that if the pitch one half step above has the higher 
membership value, then it is likely that the present pitch 
is incorrectly detected.  Another reason is that pitch 
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membership values are more accurate in the higher 
registers than in lower ones.  Hence, if the membership 
value of the pitch an octave above is higher, then this 
higher value already accounts for that pitch class in the 
final distribution.  If the membership value of the pitch 
a half step plus an octave above is higher, then it is 
likely that the current one was not sounded.  

Mathematically, we first define the membership 
negation value for lower pitches, a quantity that 
represents the fuzzy likelihood that a pitch is not 
sounded. The membership negation value is the 
maximum of the membership values of the pitch one 
half step above (Pi,j+1), and the first overtones of the 
pitch itself (Pi+1,j) and that of the pitch one half step 
above (Pi+1,j+1):  

{ })1,1(),,1(),1,(max),(~ ++++= jiPmemjiPmemjiPmemjiPmem ,    (2) 
where i = 2, 3 and j = 1…12, because we consider only 
the lower frequency pitches, pitches below C4. 

Next, we set the membership values of lower-
frequency pitches to zero if its membership negation 
value is larger than its membership value: 





≤
>

=
)mem(P)mem(P ifPmem
)mem(P)mem(P if, 

Pmem
i,ji,jji

i,ji,j
ji,

~),(
~0

)(
, ,   (3) 

where i = 2, 3 and j = 1…12 . 

3.2.2 Adaptive level weighting 

The fuzzy analysis technique described in the previous 
section prioritizes the membership values of higher 
frequency pitches. This becomes problematic in key 
evaluation of pieces containing large segments of music 
with only lower frequency pitches. The adaptive level 
weighting scheme described here scales the FFT results 
in each pre-defined range by the density of the signal in 
that range so as to better detect the presence of 
important pitches in that frequency range.  

The adaptive level weight for a given range, a 
scaling factor, is the relative density of signal in that 
range.  For example, the adaptive level weight for 
register i (which includes pitches Ci through Bi), Lwi, is 
defined as:  

∑∑∑
= ==

=
6

2

12

1
,

12

1
, )()(

k j
jk

j
jii PFFTPFFTLw ,               (4) 

Finally, we generate the weight for each pitch class, 
mem(Cj), by summing the membership values of that 
pitch across all registers, multiplied by the 
corresponding adaptive level weight:  

∑
=

=
6

2
)(*)( ,

i
PmemLwCmem jiij , where j = 1…12.       (5) 

3.2.3 Flatten high and low values 

To reduce minor differences in the membership values 
of important pitch classes and to eliminate low-level 
noise, we introduce the final step described in this 
section.  We set the pitch class membership values equal 
to one if they are larger than 0.8, and equal to zero if 

they are less than 0.2. The flat output for higher 
membership values prevents louder pitches from 
dominating the weight distribution. Last but not least, 
we normalize the membership values for all pitch 
classes by scaling them to sum to one.  

3.3 Periodic cleanup 

Based on our observations, errors tend to accumulate 
over time. To counter this effect, we implemented a 
periodic cleanup procedure that takes place every 2.5 
seconds. In this cleanup step, we sort the pitch classes in 
ascending order and isolate the four pitches with the 
smallest membership values. We set the two smallest 
values to zero, a reasonable choice since most scales 
consist of only seven pitch classes. For the pitch classes 
with the third and fourth smallest membership values, 
we consult the current key assigned by the CEG 
algorithm; if the pitch class does not belong to the key, 
we set the membership value to zero as well. 

4 EXPERIMENTS AND RESULTS 
To evaluate the fuzzy analysis technique, we choose 
excerpts from 410 classical music pieces by various 
composers across different time and stylistic periods, 
ranging from Baroque to Contemporary.  Most the 
pieces are concertos, preludes, and symphonies, 
comprising of polyphonic sounds from a variety of 
instruments. The key of each piece is stated explicitly by 
the composer in the title. We use only the first fifteen 
seconds of the first movement, so that the test samples 
are highly likely to remain in the stated key for the entire 
duration of the sample. 

In order to facilitate the comparison of audio key 
finding from symbolic and audio data, we started with 
MIDI samples from www.classicalarchieves.com, and 
used the Winamp software with a sampling rate of 44.1 
kHz to render MIDI files to audio (wave format). We 
tested three different systems on the same pieces.  The 
first system applied the CEG algorithm to MIDI files, 
the second applied the CEG algorithm to pitch class 
distributions generated by peak detection, and the third 
applied the CEG algorithm to pitch class distributions 
generated by fuzzy analysis. Each system returned a key 
answer every 0.37 seconds and the answers are 
classified into five categories: correct, dominant, 
relative, parallel, and others.   

4.1 Overall results 

The correct rates of the three systems over time are 
shown in Figure 2. For the 410 classical music pieces, 
the correct rate using fuzzy analysis is consistently 
higher than that for the peak detection method, except 
for the first 0.37 seconds. The difference exceeds 10% 
from 5.55 seconds onwards. From 6.66 to 12.95 seconds, 
the results of the audio key finding system with fuzzy 
analysis perform almost as well as that for MIDI key 
finding. 
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5.5 sec 

12.95 sec6.66 sec

 Figure 2. Comparison of overall key finding results. 
 

(a) 5 seconds into the pieces 

 
(b) 10 seconds into the pieces 

 (c) 15 seconds into the pieces 

 
Figure 3. Detailed analysis of overall results. 

The detailed analyses of the results at 5, 10 and 15 
seconds are shown in Figures 3(a), (b), and (c) 
respectively. In Figure 3, the results are classified into 
five categories. Notice that most of the closer-key errors 
for audio key finding were due to the mislabelling of the 
pieces as being in the dominant key (a perfect fifth 
above the correct one). The fuzzy analysis technique 
improves the correct rate by reducing the closer-key 
answers in the Dominant and the Others categories. The 
audio key finding methods (both peak detection and 
fuzzy analysis) suffer more from parallel key errors, 
while the symbolic (MIDI) key finding suffers more 
from relative key errors. These results are probably due 
to the fact that relative keys share the same pitch classes 
as the correct one, while the audio dominant and parallel 
key errors most likely result from incorrect weight 
distributions in the pitch classes. 

The other important observation is that symbolic key 
finding suffers most from errors in the Others category 
15 seconds into the pieces, as shown in Figure 3(c). One 
explanation for this could be that symbolic key finding 
is distracted by extraneous information such as 
accidentals, while the amplitude and frequency 
characteristics of musical audio signals constrain audio 
key finding results to mostly the closer keys.  

The resulting maximum correct percentage, average 
correct percentage, and median correct percentage for 
key identification by the three systems are summarized 
in Table 1. Notice that the fuzzy analysis technique 
significantly improves the peak detection results, 
especially in terms of the average correct percentage 
and median correct percentage. 

Table 1. Summary of overall results. 

 MIDI Audio 
(peak detection) 

Audio 
(fuzzy analysis)

Max correct 
percentage (%) 80.34 70.17 75.25 

Average correct
percentage (%) 73.91 62.23 69.81 

Median correct
percentage (%) 72.97 61.98 70.22 

4.2 Results sorted by stylistic period 

We classify our test data according to the stylistic 
periods defined by www.classicalarchives.com: Baroque 
(Bach and Vivaldi), Classical (Haydn and Mozart), Late 
Classical and Early Romantic (Beethoven and Schubert), 
Romantic (Chopin, Mendelssohn, and Schumann), Late 
Romantic (Brahms and Tchaikovsky), and 
Contemporary (Copland, Gershwin, and Shostakovich).  
    The key finding results for 95 pieces by Bach and 
Vivaldi (concertos) are shown in Figure 4. The audio 
key finding systems perform as well as, sometimes even 
superceding, the MIDI key finding results in the first 5 
seconds. The results for the peak detection method drop 
after 6.66 seconds. In contrast, the correct rate of the 
fuzzy analysis technique remains comparable to that for 
MIDI. The correct rate for the fuzzy analysis technique 
is more than 20% higher than the peak detection method 
from 10 seconds to 15 seconds. 
 

6.66 sec 10 sec 

20%

 Figure 4. Key finding results for 95 Baroque pieces. 

The key finding results for 115 pieces by Haydn and 
Mozart (symphonies) are shown in Figure 5. The test 
samples from the classical period are the only cases 
where the audio key finding systems outperform that for 
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MIDI. Note that the system with fuzzy analysis has a 
higher correct rate than that with peak detection from 
5.55  to 15 seconds.   

5.55 sec 11.1sec 

Figure 5. Key finding results for 115 classical pieces by 
Haydn and Mozart. 

At 11.1 seconds, we observe the largest difference 
between MIDI and audio key finding. Figure 6 presents 
the detailed breakdown of the key finding results at 11.1 
seconds. The figure shows that most of the MIDI errors 
are due to assignments to the dominant key. It is 
difficult to judge from the summary statistics whether 
some of the pieces actually change to their dominant 
keys at this time, a likely scenario. However, the 
symbolic key finding system produces more errors in 
the Others category than the audio key finding systems.  

 
Figure 6. Detailed analysis of key finding results 
for 115 classical pieces at 11.1 seconds. 

The results of Late Classical-Early Romantic, 
Romantic, and Late Romantic are presented in Figure 
7(a), (b), and (c) respectively. Compared to the Baroque 
and Classical periods, the correct rates are significantly 
diminished for examples from each of these later 
periods. The shape of the correct percentage line reflects 
the less structured music style. For example, in 
Romantic period, the results for all systems start with 
lower correct rates and gradually increase over time. In 
the Late Romantic period, the results also start with a 
lower correct rate, then increase significantly within 
2.59 seconds, but drop again towards 15 seconds. The 
results imply that in the Romantic period, the music may 
start with a key other than the one stated, while in the 
Late Romantic period, the music changes quickly to 
other keys. 

Figure 8 shows the key finding results for 29 pieces 
by Copland, Gershwin and Shostakovich, twentieth 
century classical composers. Observe that the results in 
Figures 7(a), (b), (c), and 8 show higher correct rates for 
the fuzzy technique than the peak detection method.  In 
each case, the fuzzy technique resulted in correct rates 

closer or equal to the MIDI results. In Figure 7(a), the 
audio results decrease at 3.7 seconds, but fuzzy analysis 
has a beneficial effect on audio key finding between 
4.81 and 15 seconds. For music from the Romantic 
period (Figure 7(b)), the fuzzy analysis results are 
comparable to that for symbolic key finding between 
4.44 and 9.25 seconds. For music from the Late 
Romantic period (Figure 7(c)), MIDI and audio key 
finding perform similarly, with results that are difficult 
to verify objectively due to the tonal complexity of the 
pieces. In Figure 8, the fuzzy analysis technique obtains 
better results than the peak detection method from 2.22 
seconds to 8.51 seconds, while the MIDI results are 
consistently better.  This could be due in part to pitch 
spelling errors, as the pitch spelling technique gives 
priority to pitches in the same key (as does the periodic 
cleanup procedure). 

(a) Late Classical and Early Romantic: 87 pieces by 
Beethoven and Schubert 

3.7 sec 4.81 sec

 
(b) Romantic: 50 pieces by Chopin, Mendelssohn, and 
Schumann 

4.44 sec
9.25 sec 

 
(c) Late Romantic: 34 pieces by Brahms and 
Tchaikovsky

2.59 sec 8.88 sec 

 
Figure 7. Key finding results for late classical and 
romantic works. 
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2.22 sec 8.51 sec 

Figure 8. Key finding results for 29 Contemporary 
pieces by Copland, Gershwin and Shostakovich. 

5 CONCLUSIONS  
We have presented a fuzzy analysis technique for pitch 
class determination to improve the accuracy of key 
finding for polyphonic audio. We evaluate the technique 
by comparing the results of symbolic (MIDI) key finding, 
audio key finding with peak detection, and audio key 
finding with fuzzy analysis. We showed that the fuzzy 
analysis technique was superior to a simple peak 
detection policy, increasing the percentage of correct key 
identifications by 12.18% on average. In fact, the 
percentage correct for the fuzzy analysis technique 
matched that of symbolic key finding 41.73% of the time. 
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