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ABSTRACT

When considering the problem of audio-to-audio match-

ing, determining musical similarity using low-level fea-

tures such as Fourier transforms and MFCCs is an ex-

tremely difficult task, as there is little semantic informa-

tion available. Full semantic transcription of audio is an

unreliable and imperfect task in the best case, an unsolved

problem in the worst. To this end we propose a robust

mid-level representation that incorporates both harmonic

and rhythmic information, without attempting full tran-

scription. We describe a process for creating this represen-

tation automatically, directly from multi-timbral and poly-

phonic music signals, with an emphasis on popular mu-

sic. We also offer various evaluations of our techniques.

Moreso than most approaches working from raw audio,

we incorporate musical knowledge into our assumptions,

our models, and our processes. Our hope is that by utiliz-

ing this notion of a musically-motivated mid-level repre-

sentation we may help bridge the gap between symbolic

and audio research.

Keywords: Harmonic description, segmentation, music

similarity

1 Introduction

Mid-level representations of music are measures that can

be computed directly from audio signals using a combi-

nation of signal processing, machine learning and musical

knowledge. They seek to emphasize the musical attributes

of audio signals (e.g. chords, rhythm, instrumentation),

attaining higher levels of semantic complexity than low-

level features (e.g. spectral coefficients, MFCC, etc), but

without being bounded by the constraints imposed by the

rules of music notation. Their appeal resides in their abil-

ity to provide a musically-meaningful description of audio

signals that can be used for music similarity applications,
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such as retrieval, segmentation, classification and brows-

ing in musical collections.

Previous attempts to model music from complex au-

dio signals concentrate mostly on the attributes of timbre

and rhythm (Aucouturier and Pachet, 2002; Yang, 2002).

These methods are usually limited by the simplicity of

their selected feature set, which can be often regarded

as low-level. Dixon et al. (2004) demonstrated that it is

possible to successfully characterize music according to

rhythm by adding higher-level descriptors to a low-level

feature set. These descriptors are more readily available

for rhythm than for harmony as the state-of-the-art in beat,

meter tracking and tempo estimation has had more success

than similar efforts on chord and melody estimation.

Pickens et al. (2002) showed success at identifying

harmonic similarities between a polyphonic audio query

and symbolic polyphonic scores. The approach relied on

automatic transcription, a process which is partially effec-

tive within a highly constrained subset of musical record-

ings (e.g. mono-timbral, no drums or vocals, small poly-

phonies). To effectively retrieve despite transcription er-

rors, all symbolic data was converted to harmonic distri-

butions and similarity was measured by computing the

distance between two distributions over the same event

space. This is an inefficient process that goes to the un-

necessary step of transcription before the construction of

an abstract representation of the harmony of the piece.

In this paper we propose a method for semantically

describing harmonic content directly from music signals.

Our goal is not to do a formal harmonic analysis but to

produce a robust and consistent harmonic description use-

ful for similarity-based applications. We do this with-

out attempting to estimate the pitch of notes in the mix-

ture. By avoiding the transcription step, we also avoid

its constraints, allowing us to operate on a wide variety

of music. The approach combines a chroma-based repre-

sentation and a hidden Markov model (HMM) initialized

with musical knowledge and partially trained on the sig-

nal data. The output, which is a function of beats (tactus)

instead of time, represents the sequence of major and mi-

nor triads that describe the harmonic character of the input

signal.

The remainder of this paper is organized as follows:

Section 2 reviews previous work on this area; Section 3

gives details about the construction of the feature vector;

Section 4 explains the used model and justifies our ini-
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tialization and training choices; Section 5 evaluates the

representation against a database of annotated pop music

recordings; Section 6 discusses the application of our rep-

resentation to long-term segmentation; and finally, Sec-

tion 7 presents our conclusions and directions for future

work.

2 Background

We are by no means the first to use either chroma-based

representations or HMMs for automatically estimating

chords, harmony or structure from audio recordings. Pre-

vious systems (Gomez and Herrera, 2004; Pauws, 2004)

correlate chromagrams1, to be explained in 3.1, with

cognition-inspired models of key profiles (Krumhansl,

1990) to estimate the overall key of music signals. Sim-

ilarly Harte and Sandler (2005) correlate tuned chroma-

grams with simple chord templates for the frame-by-frame

estimation of chords in complex signals. While differing

in their goals, these studies identified the lack of contex-

tual information about chord/key progressions as a weak-

ness of their approaches, as at the level of analysis frames

there are a number of factors (e.g. transients, arpeggios,

ornamentations) that can negatively affect the local esti-

mation.

In their research on audio thumbnailing, Bartsch and

Wakefield (2001) found that the structure of a piece,

as seen by calculating a similarity matrix, is more

salient when using beat-synchronous analysis of chromas.

Longer analysis frames help to overcome the noise intro-

duced by transients and short ornamentations. However,

this solution still does not make use of the fact that in a

harmonic progression certain transitions are more likely

to occur than others.

An alternative way of embedding the idea of harmonic

progression into the estimation is by using HMMs. The

work by Raphael and Stoddard (2003) is a good exam-

ple of successfully using HMMs for harmonic analysis;

although their analysis is done from MIDI data, they do

adopt beat-synchronous observation vectors.

Perhaps the approach which is most similar to ours is

that proposed by Sheh and Ellis (2003) for chord estima-

tion. In this approach an HMM is used on Pitch Class Pro-

file features (PCP) estimated from audio. Both the mod-

els for chords (147 of them) and for chord transitions, are

learned from random initializations using the expectation

maximization (EM) algorithm. Importantly, this approach

differs from ours on that no musical knowledge is explic-

itly encoded into the model, something that, as will be

demonstrated in future sections, has a notable impact on

the robustness of the estimation. Also, our choice of fea-

ture set and use of a beat-synchronous analysis frame min-

imizes the effect of local variations. Finally, our proposal

differs in scope, we are not trying to achieve chord tran-

scription but to generate a robust harmonic blueprint from

audio, and to this end we limit our chord lexicon to the

24 major and minor triads, a symbolic alphabet that we

consider to be sufficient for similarity-based applications.

1also referred to as Harmonic Pitch Class Profiles: HPCP

3 Features

The first stage of our analysis is the calculation of a se-

quence of suitable feature vectors. The process can be

divided into four main steps: 36-bin chromagram calcula-

tion, chromagram tuning, beat-synchronous (tactus) seg-

mentation and 12-bin chromagram reduction.

3.1 Chromagram calculation

A standard approach to modeling pitch perception is as a

function of two attributes: height and chroma. Height re-

lates to the perceived pitch increase that occurs as the fre-

quency of a sound increases. Chroma, on the other hand,

relates to the perceived circularity of pitched sounds from

one octave to the other. The musical intuitiveness of the

chroma makes it an ideal feature representation for note

events in music signals. A temporal sequence of chro-

mas results in a time-frequency representation of the sig-

nal known as chromagram.

In this paper we use a common method for chro-

magram generation known as the constant Q transform

(Brown, 1991). It is a spectral analysis where frequency-

domain channels are not linearly spaced, as in DFT-based

analysis, but logarithmically spaced, thus closely resem-

bling the frequency resolution of the human ear. The con-

stant Q transform Xcq of a temporal signal x(m) can be

calculated as:

Xcq(k) =
N(k)−1

∑

n=0

w(n, k)x(n)e−j2πfkn (1)

where both, the analysis window w(k) and its length

N(k), are functions of the bin position k. The center fre-

quency fk of the kth bin is defined according to the fre-

quencies of the equal-tempered scale such that:

fk = 2k/βfmin (2)

where β is the number of bins per octave, thus defining the

resolution of the analysis, and fmin defines the starting

point of the analysis in frequency. From the constant Q

spectrum Xcq, the chroma for a given frame can then be

calculated as:

Chroma(b) =
M
∑

m=0

|Xcq(b + mβ)| (3)

where b ∈ [1, β] is the chroma bin number, and M is the

total number of octaves in the constant Q spectrum. In

this paper, the signal is downsampled to 11025Hz, β =
36 and analysis is performed between fmin = 98Hz and

fmax = 5250Hz. The resulting window length and hop

size are 8192 and 1024 samples respectively.

3.2 Chromagram tuning

Real-world recordings are often not perfectly tuned, and

slight differences between the tuning of a piece and the

expected position of energy peaks in the chroma represen-

tation can have an important influence on the estimation of

chords.
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Figure 1: Frame and tactus-based feature vectors for Eight days a week by The Beatles. At the bottom the estimated chord

labels can be observed: “true” corresponds to the ground-truth chord annotation, “est1” corresponds to the chord labels

estimated using frame-based features, and “est2” corresponds to the chords estimated using tactus-based features.

The 36-bin per octave resolution is intended to clearly

map spectral components to a particular semitone regard-

less of the tuning of the recording. Each note in the octave

is mapped by 3 bins in the chroma, such that bias towards

a particular bin (i.e. sharpening or flattening of notes in

the recording) can be spotted and corrected. To do this we

use a simpler version of the tuning algorithm proposed by

Harte and Sandler (2005). The algorithm starts by pick-

ing all peaks in the chromagram. Resulting peak positions

are quadratically interpolated and mapped to the [1.5, 3.5]
range. A histogram is generated with this data, such that

skewness in the distribution is indicative of a particular

tuning. A corrective factor is calculated from the distribu-

tion and applied to the chromagram by means of a circular

shift. Finally, the tuned chromagram is low-pass filtered

to eliminate sharp edges.

3.3 Beat-synchronous segmentation

As mentioned before, beat-synchronous analysis of the

signal helps to overcome the problems caused by transient

components in the sound, e.g. drums and guitar strum-

ming, and short ornamentations, often introduced by vo-

cals. Both these cases are quite common in pop music

recordings, hence the relevance of this processing step.

Furthermore, harmonic changes often occur at a longer

time span than that defined by the constant Q analysis,

thus the default temporal resolution results unnecessary

and often detrimental.

In our approach we use the beat tracking algorithm

proposed by Davies and Plumbley (2005). This method

has proven successful for a wide variety of signals. Using

beat-synchronous segments has the added advantage that

the resulting representation is a function of beat, or “tac-

tus”, rather than time. These facilitates comparison with

songs in different tempos.

3.4 Observation Vectors

Finally, the chromagram is averaged within beat segments

and further reduced from 36 to 12 bins by simply sum-

ming within semitones. A piece of music is thus repre-

sented as a sequence of these 12 dimensional vectors.

4 Chord Labeling

Let us turn our attention to the chord labeling of the

chroma sequence. Recall, however, that our goal is not

true harmonic analysis, but a mid-level representation

which we believe will be useful for music similarity and

music retrieval tasks. For this we apply the HMM frame-

work (Rabiner, 1989). As mentioned in section 2, we are

not the first to use this framework, but we utilize it in a

relatively new way, based largely on music theoretic con-

siderations.

4.1 Chord lexicon

The first step in labeling the observations in a data stream

is to establish the lexicon of labels that will be used. We

define a lexical chord as a pitch template. Of the 12

octave-equivalent (mod 12) pitches in the Western canon,

we select some n-sized subset of those, call the subset a

chord, give that chord a name, and add it to the lexicon.

Not all possible chords belong in a lexicon and we must

therefore restrict ourselves to a musically-sensible subset.

The chord lexicon used in this work is the set of 24 major

and minor triads, one each for all 12 members of the chro-

matic scale: C Major, c minor, C♯ Major, c♯ minor . . . B♭
Major, b♭ minor, B Major, b minor. Assuming octave-

invariance, the three members of a major triad have the

relative semitone values n, n + 4 and n + 7; those of a

minor triad n, n + 3 and n + 7. No distinction is made

between enharmonic equivalents (C♯/D♭, A♯/B♭, etc.).
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(a) (b)
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Figure 2: State-transition distribution A: (a) initializa-

tion of A using the circle of fifths, (b) trained on Another

Crossroads (M. Chapman), (c) trained on Eight days a

week (The Beatles), and (d) trained on Love me do (The

Beatles). All axes represent the 24 lexical chords (C→B

then c→b)

We have chosen a rather narrow space of chords. We

did not include dyads nor other more complex chords such

as augmented, diminished, 7th or 9th chords. Our intu-

ition is that by including too many chords, both complex

and simple, we run the risk of “overfitting” our models

to a particular piece of music. As a quick thought exper-

iment, imagine if the set of chords were simply the en-

tire
∑

n=1..12

(

12
n

)

= 212 − 1 possible combinations of 12

notes. Then the set of chord labels would be equivalent

to the set of 12-bin chroma and one would not gain any

insight into the harmonic “substance” of a piece, as each

observation would likely be labeled with itself. This is

an extreme example but it illustrates the intuition that the

richer the lexical chord set becomes, the more our feature

selection algorithms might overfit one piece of music and

not be useful for the task of determining music similarity.

While it is clear that the harmony of only the crudest

music can be reduced to a mere succession of major and

minor triads, as this choice of lexicon might be thought to

assume, we believe that this is a sound basis for a proba-

bilistic approach to labeling. In other words, the lexicon is

a robust mid-level representation of the salient harmonic

characteristics of many types of music, notably popular

music.

4.2 HMM initialization

In this paper we are not going to cover the basics of hid-

den Markov modeling. This is far better covered in works

such as (Rabiner, 1989) and even by previous music HMM

papers cited above. Instead, we begin by describing the

initialization procedure for the model. As labeled training

data is difficult to come by, we forgo supervised learning

and instead use the unsupervised mechanics of HMMs for

parameter estimation. However, with unsupervised train-

ing it is crucial that one start the model off in a reason-

able state, so that the patterns it learns correspond with

the states over which one is trying to do inference.

4.2.1 Initial state distribution [π]

Our estimate of π is 1
24 for each of the 24 states in the

model. We have no reason to prefer, a priori, any state

above any other.

4.2.2 State transition matrix [A]

Prior to observing an actual piece of music we also do not

know what states are more likely to follow other states.

However, this is where a bit of musical knowledge is use-

ful. In a song, we might not yet know whether a C major

triad is more often followed by a B♭ major or a D ma-

jor. But it is reasonable to assume that both hypotheses

are more likely than an F♯ major. Most music tends not to

make large, quick harmonic shifts. One might gradually

wander from the C to the F♯, but not immediately. We use

this notion to initialize our state transition matrix.
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The figure above is a doubly-nested circle of fifths,

with the minor triads (lower case) staggered throughout

the major triads (upper case). Triads closer to each other

on the circle are more consonant, and thus receive higher

initial transition probability mass than triads further away.

Specifically, the transition C→C is given a probability
12+ǫ

144+24ǫ
, where ǫ is a small smoothing constant, C→e =

11+ǫ
144+24ǫ

and then clockwise in a decreasing manner, un-

til C→F♯ = 0+ǫ
144+24ǫ

. At that point, the probabilities be-

gin increasing again, with C→b♭ = 1+ǫ
144+24ǫ

and C→a =
11+ǫ

144+24ǫ
.

The entire 24×24 transition matrix, as seen in Figure

2(a), is constructed in a similar manner for every state,

with a state’s transition to itself receiving the highest ini-

tial probability estimate, and the remaining transitions re-

ceiving probability mass relative to their distance around

the 24-element circle above.

4.2.3 Observation (output) distribution [B]

Each state in the model generates, with some probability,

an observation vector. We assume a continuous observa-

tion distribution function modeled using a single multi-

variate Gaussian for each state, each with mean vector µ
and covariance matrix Σ.

Sheh and Ellis (2003) use random initialization of µ
and a Σ covariance matrix with all off diagonal elements

set to 0, reflecting their assumption of completely uncor-

related features. We wish to avoid this assumption. One

of the main purposes of this paper is to argue that musical
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Figure 3: Initializations for µ and Σ. Top-left is µ for

all states (a). Then for a C major chord: diag-only (b),

weighted-diag (c), and off-diag(d) initializations of Σ.

The x axis in (a) corresponds to the 24 lexical chords. All

other axes refer to the 12 notes in the chroma circle.

knowledge needs to play an important role in music infor-

mation retrieval tasks. Thus if we are using triads as our

hidden state labels, µ and Σ should reflect this fact.

Let us take for example the C major triad state. Instead

of initializing µ randomly, we initialize it to 1.0 in the C,

E, and G dimensions, and 0.0 elsewhere. This reflects the

fact that the triad is grounded in those dimensions. Initial-

izations of µ for all states can be seen in Fig. 3(a).

The covariance matrix should also reflect our musi-

cal knowledge. Covariance is a measure of the extent to

which two variables move up or down together. Thus, for

a C major triad, it is reasonable that pitches which com-

prise the triad are more correlated than pitches which do

not belong to the triad. Naturally, the pitches C, E, and

G are strongly correlated with themselves. Furthermore,

these pitches are also strongly correlated with each other.

We symmetrically use the knowledge, gained both from

music theory as well as empirical evidence (Krumhansl,

1990), that the dominant is more important than the medi-

ant in characterizing the root of the triad. We set the co-

variance of the tonic with the dominant to 0.8, the mediant

with the dominant to 0.8, and the tonic with the mediant

to 0.6. The actual values are heuristic, but the principle

we use to set them is not.

The remainder of covariances in the matrix are set to

zero, reflecting the fact that from the perspective of a C

major triad there is little useful correlation between, say,

an F♯ and an A♯. The non-triad member diagonals are

set to 0.2 both to indicate that non-triad pitches need not

be as strongly self-correlated, as well as to insure that the

matrix is positive, semi-definite. Figure 3(d) shows the

covariance matrix used for the C major triad state.

The covariance for C minor is constructed almost ex-

actly the same way, but with the mediant on D♯/E♭ rather

than on E, as would be expected. The remainder of the

matrices for all the states are constructed by circularly

shifting the major/minor matrix by the appropriate num-

ber of semitones.

4.3 HMM Training

A key difference between our approach and previous sys-

tems is our use of musical knowledge for model initializa-

tion. There are two important pieces of information that

we are providing the system: a template for every chord

in the lexicon, as given by µ and Σ, and cognitive-based

knowledge about likely chord progressions, as given by

the state transition probability matrix A.

It is relatively safe to say that the template for a chord

is almost universal, e.g. a C major triad is always sup-

posed to have the notes C, E and G. If we were to change

our chord models from song to song we cannot longer

assume that a certain state will always map to the same

major or minor triad. Our labels would not have univer-

sal value. Furthermore, it is very unlikely that all chords

in our lexicon will be present in any given song (or on

any reasonably sized training set), and in training, this

situation gives rise to the undesirable effect of different

instances of existing chords being mapped to different

(available) states, usually those that are initialized closely,

e.g. relative and parallel minors and majors.

On the other hand, chord progressions are not univer-

sal, changing from song to song depending on style, com-

poser, etc. Our initial state transition probability matrix

provides a reference, founded in music cognition and the-

ory, on how certain chord transitions are likely to occur in

most western tonal music, especially pop music. We be-

lieve that this knowledge captures the a-priori harmonic

intuition of a human listener. However, we want to pro-

vide the system with the adaptability to develop models

for the particular chord progression of a given piece (see

Fig. 2), much as people do when exposed to a piece of

music they have never heard before.

We therefore propose selectively training our model

using the standard expectation maximization (EM) algo-

rithm for HMM parameter estimation (Rabiner, 1989),

such that we disallow adjustment of B = {µ,Σ}, while

π and A are updated as normal. We believe this kind of

selective training to provide a good trade-off between the

need for a stable reference for chords, and a flexible, yet

principled, modeling of chord sequences.

4.4 Chord Labeling (Inference)

Once we have both a trained model and an observation se-

quence, we can apply standard inference techniques (Ra-

biner, 1989) to label the observations with chords from our

lexicon. The idea is that there are many sequences of hid-

den states that could have been responsible for generating

the chroma vector observation sequence.

The goal is to find that sequence that maximizes the

likelihood of the data without having to enumerate the

exponentially many (24n, for a sequence of length n, in

our model) number of sequences. To this end a dynamic

programming algorithm known as Viterbi is used (Forney,

1973). This algorithm is well covered in the literature and

we do not add any details here.
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Parameters TP %

Feature π A B Training CD1 CD2 TOTAL

scope µ Σ
tactus 1

24 random template diag-only π,A,B 22.88 29.83 26.36

tactus 1
24 random template weighted-diag π,A,B 34.14 36.24 35.19

tactus 1
24 random template off-diag π,A,B 33.13 44.36 38.74

tactus 1
24 circle of 5ths template off-diag π,A,B 38.09 47.75 42.93

frame 1
24 circle of 5ths template off-diag π,A 58.96 74.78 66.87

tactus 1
24 circle of 5ths template off-diag π,A 68.55 81.54 75.04

Figure 4: Results for various model parameters

5 Evaluation and Analysis

In summary, our system, for a single piece of music, is:

1. Compute the 36-bin chromagram for the music piece.

2. Tune the chromagrams (globally) to remove slight

sharpness or flatness and avoid energy leaking from

one pitch class into another

3. Segment the signal frames into tactus-sized win-

dows, average the chroma within each window, and

finally reduce each chroma from 36 to 12 bins by

summing all three bins for each pitch class

4. Selectively train the HMM to get a sense of the har-

monic movement of the piece

5. Decode the HMM (do inference) to give a good mid-

level harmonic characterization of the piece

Despite our stated goal of harmonic description rather

than analysis, we found that it is still useful to attempt

quantitative evaluation of the goodness of our represen-

tation by comparing the generated labels to an anno-

tated collection of music. We use the test set proposed

and annotated by Harte and Sandler (2005). It contains

28 recordings (mono, fs = 44.1kHz) from the Beatles

albums: Please Please Me (CD1) and Beatles for Sale

(CD2). Note that all recordings are polyphonic and multi-

instrumental containing drums and (multi-part) vocals.

The majority of chords (89.51%) in the manually la-

beled test set belong to our proposed lexicon of major and

minor triads. However, the set also contains more com-

plex chords such as major and minor 6ths, 7ths and 9ths.

For simplicity, we map any complex chord to its root triad,

so for example C#m7sus4 becomes simply C#m. If any-

thing, this mapping has the effect of overly penalizing our

results, as chords of 4 or more notes could contain triads

other than its root triad, e.g. Fm7 (F, G#, C, D#) has 100%

overlap with G# (G#, C, D#) and Fm (F, G#, C). Compar-

isons are made on a frame-by-frame basis, such that a true

positive is defined as a one-to-one match between estima-

tion and annotation.

To quantitatively demonstrate some of the hypotheses

put forward on this paper, we evaluate a series of incre-

mental improvements to our approach. Figure 4 shows the

model parameters for each experiment and its correspond-

ing results for the test set (in percentage of true positives).

Results are presented per CD and in total. The considered

model parameters are:

• Feature scope: Whether it is a frame-by-frame

(time-based) or a beat-synchronous (tactus-based)

chroma feature set.

• Initialization of A: Whether it is randomly initial-

ized or initialized according to the circle of fifths.

• Initialization of B: Whether Σ is initialized as a di-

agonal matrix with elements equal to 1.0 (diag-only,

Fig. 3(b)), whether it is the diagonal with weighted

triad elements, as in Fig. 3(c), and off-diagonal el-

ements set to 0.0 (weighted-diag), or whether it in-

cludes the mediant and dominant off-diagonal ele-

ments, i.e. the Fig. 3(d) matrix (off-diag).

• Training: Whether π, A and B are updated in the

expectation-maximization step of HMM training or

whether B is left fixed and only π and A are adjusted.

Results in Figure 4 clearly support the choices made

in this paper. The first three rows show how initializing Σ
with a weighted diagonal and off-diagonal elements out-

performs diagonal-only initializations. This supports the

view that the feature set is highly correlated along the di-

mensions of the elements of a chord. The weighted diag-

onal in itself introduces a noticeable amount of improve-

ment over the unitary diagonal, a further indication of the

strong correlation between the tonic, mediant and domi-

nant of a chord.

The initialization of A using the circle of fifths brings

about more than 10% relative improvement when com-

pared to the random initialization. This shows how the

use of musical knowledge is crucial. .

From the analysis of the last two rows in Figure 4

two more observations can be made. The first is that se-

lective training introduces considerable benefits into our

approach. The huge accuracy increase (from 42.93%

to 75.04%) supports the view that the knowledge about

chords encoded in B is universal, and as such it should

not be modified during training. This accuracy increase

occurs for every song, showing the generality of this as-

sertion.

The second observation is that the use of a tactus-

based feature set clearly outperforms the frame-by-frame

estimation. This point is further illustrated by the chord

estimation example in Fig. 1, where the frame-by-frame

estimation is subject to small variations due to phrasing or

ornamentation (as shown by the spurious estimations of

B minor chords between 56 and 60.5 seconds), while the
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Figure 5: (left) Love me do by The Beatles: estimated chord sequence (top) and estimated segments, showing the long-

term structure “ABABA”

Figure 6: (right) Estimated chord sequence (top) and long-term segment boundaries from Wonderwall by Oasis: “true”

refers to ground-truth annotation, “seg1” to segments obtained using our raw chord label sequence and “seg2” to segments

obtained by collapsing our chord label sequence into a simple chord sequence by removing contiguous duplicates

tactus-based estimation shows more stability and, there-

fore, accuracy when compared to the ground-truth annota-

tion. Furthermore, chord changes are more likely to occur

on the beat, thus chords detected using the tactus-based

feature set tend also to be better localized.

Our results compare favorably to those reported by

Sheh and Ellis (2003) and Harte and Sandler (2005). The

maximum true positives rate in the collection is 90.86%

for Eight days a week. Conversely, the worst estimation

is for Love me do, with only 49.27% of chords correctly

identified. For the latter case almost all errors are due to

relative minor confusions: C being confused with E minor

consistently through the song. As we will see in the next

section the consistency of the representation, even when

wrong, can be useful for certain applications.

6 Application to Segmentation

To show the applicability of our chord labels to long-term

segmentation of songs we use a histogram clustering al-

gorithm developed by Abdallah et al. (2005). The algo-

rithm calculates a sequence of unlabeled states (e.g. A

and B) that represent the long-term sections of a song

(e.g. chorus, verse, bridge, etc) from a sequence of his-

tograms computed from our labeled sequence. It consists

of a phase of simulated annealing to learn the state transi-

tion probability matrix (Puzicha et al., 1999) and a second

phase of combined annealing and Gibbs sampling to com-

pute the posterior probabilities of segments belonging to

given states, and thus the sequence of states. See (Robert

and Casella, 1999) for an introduction.

The top plot of Fig. 5 shows the resulting chord label-

ing for Love me do, the song on which our labeling per-

formed the worst. The bottom plot shows, for each time

step, the marginal posterior probabilities obtained from

the segmentation algorithm, such that white indicates zero

probability and black indicates a probability of 1. From

both these plots we can clearly see the simple structure of

the song, of the form “ABABA”. This demonstrates how,

even when imperfect, our representation is consistent, al-

lowing for successful clustering of its symbols. To our

knowledge, this success is the first example of long-term

segmentation using a mid-level harmonic feature set.

Figure 6 shows segmentation results for a more com-

plicated structure, that of “Wonderwall” by Oasis. The

top plot shows our calculated sequence of chord labels

(“chords”). The next line (“true”) shows the manually an-

notated segments of the song. The middle line depicts

the automatically segmented sections using our chord la-

bels (“seg1”). Finally, the bottom line (“seg2”) shows

the automatically segmented sections obtained after first

collapsing our tactus-based chord labels (e.g. CCG-

GFFFEAAAA) into a simple sequence of chords (e.g.

CGFEA) by removing contiguous duplicates.

As can be seen in “seg1”, there are some problems

with the segmentation: the verse is segmented as to in-

clude parts of the transition, the chorus section and a fi-

nal instrumental Coda, creating some confusion between

them, and thus resulting in errors. On the other hand, seg-

mentation on the collapsed chord sequence is more accu-

rate, both in terms of temporal localization and segrega-

tion between states. We suggest that this is because the

resulting chord groupings can be thought of as equivalent

to musical phrases. Indeed, some informal testing seems

to support the idea that when the number of segmenta-

tion states is increased and the length of our histograms is

reduced, we start to pick up segments that are related to

sections at a shorter temporal scale (e.g. phrases). While

a proper study on segmentation is beyond the scope of

this paper, we suggest that this increased granularity is

potentially a major asset of harmonic-based segmentation,

in opposition to timbre-based segmentation, where short-

term structures are not necessarily indicative of musical

gestures.
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7 Conclusion

The main contribution of this work is the creation of an

effective mid-level representation for music audio signals.

We have shown that by considering the inherent musical-

ity of audio signals one achieves results far greater than

raw signal processing and machine learning techniques

alone (Figure 4). Our hope is that these ideas and their re-

sults will encourage those in the field working on raw au-

dio to build more musicality into their techniques. At the

same time, we hope it also encourages those working on

the symbolic side of music retrieval to aide in the creation

of additional musically sensible mid-level representations

without undue concern over whether such representations

strictly adhere to formal music theory guidelines.

In support of this goal, we have integrated into a single

framework a number of state-of-the-art music processing

algorithms. Specifically, we build our algorithms upon a

musical foundation in the following ways: (1) The audio

signal is segmented into tactus windows rather than time-

based frames. (2) Pitch chroma are tuned. (3) A lexicon

of 24 triads is used, which is neither too specific or too

general, in an attempt to describe harmonic movement in

a piece rather than doing a formal harmonic analysis. (4)

Initialization of the machine learning (HMM) algorithm

is done in a manner that respects the dependency between

tonic, mediant, and dominant pitches in a triad, as well as

the consonance between neighboring triads in a sequence.

Finally, (5) the machine learning algorithm itself is mod-

ified with an eye toward musicality; updates to model pa-

rameters are done so as to maintain the relationship be-

tween pitches in a chord, but be amenable to changing

chord transitions in a sequence.

In the future we are planning a series of audio-to-audio

music retrieval experiments to further show the validity

of our approach. We will also continue to develop and

integrate techniques that emphasize the musical nature of

the underlying source. We believe that this mindset is vital

to continuing development in the field.
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