
Ringomatic: A Real-Time Interactive Drummer
Using Constraint-Satisfaction and Drum Sound Descriptors

Jean-Julien Aucouturier
SONY CSL Paris

6, rue Amyot
75005 Paris, France
jj@csl.sony.fr

François Pachet
SONY CSL Paris

6, rue Amyot
75005 Paris, France

pachet@csl.sony.fr

ABSTRACT

We describe a real-time musical agent that generates an
audio drum-track by concatenating audio segments auto-
matically extracted from pre-existing musical files. The
drum-track can be controlled in real-time by specifying
high-level properties (or constraints) holding on meta-
data automatically extracted from the audio segments. A
constraint-satisfaction mechanism, based on local search,
selects audio segments that best match those constraints at
any time. We report on several drum track audio descrip-
tors designed for the system. We also describe a basic
mecanism for controlling the tradeoff between the agent’s
autonomy and reactivity, which we illustrate with exper-
iments made in the context of a virtual duet between the
system and a human pianist.

Keywords: interaction, drumtrack, metadata, constraint
satisfaction, concatenative synthesis

1 INTRODUCTION

State-of-the-art sample-based drum machines (or virtual
drumkits) such as Fxpansion’s BFD (FXpansion, 2003) or
Toontrack’s Drumkit From Hell (Toontrack, 2003) offer
drum programmers almost total control over the sampled
sounds that are played, the microphones used, the drumkit
manufacturer, and even the individual drums and cymbals
being used. Like other sampled instruments, they bene-
fit from the improvement of digital storage, often offering
tens of thousands of sounds from tens of different drumk-
its, recorded by tens of different drummers, each using
several velocities for each stroke. They also ship with
large libraries of Midi-like drum patterns (or presets, or
“grooves”), which can be associated with one of the very
many sets of sounds to give an instant, realistic drumtrack.

While the expressive power of such machines for drum
programmers is unprecedented, they offer very little pos-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2005 Queen Mary, University of London

Database

t

high energy

tom-toms

low energy

no tom-toms

low energy

some cymbals

high energy

tom-toms

 and cymbals

Figure 1: The drumtrack is produced by concatenating
drumbars selected in a database according to their meta-
data.

sibilities for interactive music systems, as proposed e.g.
in Rowe (1993). On the one hand, the sounds and pat-
terns are mostly undescribed, only using editorial, arbi-
trary metadata (e.g. what are the perceptual qualities of
“retrobreaks fill A” ? Is it energetic ? Syncopated ? How
does “kick-Leedy” sounds compared to “kick-PearlB” ?).
This makes high-level mappings between a real-time mu-
sical input and the virtual drummer difficult. On the other
hand, it is difficult to add new sounds into the system, in
order to adapt to specific musical contexts. This typically
involves buying expensive, pre-built extension packs.

In this work, we propose a sampled-based drum ma-
chine whose output can be controlled in real-time by high-
level properties such as energy, density, saliency of drums
or cymbals, etc. We use audio analysis techniques inspired
by MIR to both gather the sampled material, which is au-
tomatically extracted from pre-existing musical files (e.g.
drum solo parts in a jazz mp3) and index each sample with
acoustic metadata, automatically extracted from the sig-
nal. The typical sample used in the system is a few beats’
audio extract from a drum part, which correspond to a mu-
sical bar, and can therefore be looped while preserving a
feeling of steady beat and metric. As seen in Figure 1, the
drumtrack produced by the drummer is a continuous con-
catenation of such bars of drumming, which we call here

412

drumbars. We propose a constraint-satisfaction algorithm
to control the drumtrack’s high-level properties, such as
its energy or its continuity, and a real-time mechanism to
allow constraints to be modified at any time.

Our system builds on several prior works. Rhythm is a
well-covered subject of study in computer music. Bilmes
(1993) works on transcriptions to study velocity and tim-
ing deviations in human performance, aiming at building
more realistic drum machines. There have been numerous
attempts at generating interesting rhythms, notably with
Genetic Algorithms (Pachet, 2000; Tokui and Iba, 2001).
On the audio side, drum sounds have received recent at-
tention in the MIR community, to either transcribe drum-
tracks from polyphonic music (Zils et al., 2002), mea-
sure similarity between drum patterns (Paulus and Kla-
puri, 2002) or classify drum sounds, notably between bass
and snare drum (Herrera et al., 2002; Yoshii et al., 2004).
However, most of the work so far has focused on the tim-
bre of individual drum strokes, rather than on perceptive
qualities of full drum loops like in this paper.

Concatenative synthesis (Lazier and Cook (2003);
Schwarz (2003); Zils and Pachet (2001)) is also gaining
more and more attention in the field of music. Concate-
native synthesis uses a database of samples, orunits, and
a unit selectionalgorithm that finds the sequence of units
that match best a target sound or phrase. It mainly focuses
on the precise reconstruction of the target, e.g. for realistic
instrument synthesis. While our work uses the same ba-
sic scheme of concatenating sound samples selected from
a database, we target an interaction context where there
is no pre-specified target sequence. On this respect, it is
more on the side of the automatic sampler described in
Aucouturier et al. (2004).

Constraint satisfaction programming (CSP) finally is
a paradigm for solving difficult combinatorial problems,
particularly in the finite domain. In this paradigm, prob-
lems are represented by variables having a finite set of
possible values, and constraints represent properties that
the values of variables should have in solutions. CSP is
a powerful paradigm because it lets the user state prob-
lems declaratively by describing a priori the properties of
its solutions and use general-purpose algorithms to find
them. There have been numerous applications of CSP to
music, e.g. for automatic generation of playlists of music
titles (Aucouturier and Pachet, 2002), automatic harmo-
nization (Pachet and Roy, 2001) and spatialization (Pa-
chet and Delerue, 2000). In Zils and Pachet (2001), we
introduced the concept of musical mosaics (“Musaicing”),
and the idea of using CSP to generate audio sequences of
sound samples, with high-level constraints holding on the
metadata of the samples. The work presented on this pa-
per is a real-time, interactive extension of Musaicing.

2 AUTOMATIC GATHERING AND
INDEXING OF AUDIO MATERIAL

This section describes both how drumbars are gathered
automatically from existing music titles, and how each
drumbar is described with automatically computed meta-
data. Both steps rely on EDS (Zils and Pachet, 2004), an
audio classification system developed at Sony CSL.

Figure 2: Screenshot of the EDS system showing the re-
sults of feature discovery for the detection of drum solo

2.1 Metadata Extraction with EDS

EDS (Extractor Discovery System) (Zils and Pachet,
2004) is a generic scheme for extracting arbitrary high-
level audio descriptors from audio signals. It is able to
automatically produce a fully-fledged audio extractor (an
executable) from a database of labeled audio examples.
It uses a supervised learning approach. Its main charac-
teristics is that it finds automatically optimal audio fea-
tures adapted to the problem at work. Descriptors are
traditionally designed by combining Low-Level Descrip-
tors (LLDs) using machine-learning algorithms (see e.g.
Scheirer and Slaney (1997)). The key idea of EDS is to
substitute the basic LLDs with arbitrary complex compo-
sitions of signal processing operators: EDS composes au-
tomatically operators to build features as signal process-
ing functions that are optimal for a given descriptor ex-
traction task. The search for specific features is based on
genetic programming, a well-known technique for explor-
ing search spaces of function compositions (Koza, 1992).
Resulting features are then fed to a learning model such
as a Gaussian Mixture Models (GMM) or Support Vec-
tor Machine (SVM) to produce a fully-fledged extractor
program.

2.2 Drum Solo Detection with EDS

In order to extract drumbars from music recordings, we
first need the ability to detect drum solo parts, i.e. sections
in music where only a drumkit is playing. This is typically
a drum solo in the middle of a jazz piece or shorter drum
breaks in a rock or funk song. We model the problem as a
2 class classification problem. We build a labeled database
of 100 5-second music extracts, the first 50 being pure
drum solo, and the other 50 various extracts of popular
music, encompassing many different genres (jazz, rock,
heavy metal, classical, folk, electronic), with or without
drums. Figure 2 shows a screenshot of the EDS appli-
cation after a few generations of 50 features and Table

413

Table 1: EDS features for Drum detection
Feature Fitness

arcsin (power (rms (power (abs (hpFilter (x,7585.0)),-1)),-4)) 3.65
min (spectralKurtosis (hann (split (bartlett (bpFilter (triangle (square (normalize (x))), 223, 2456)), 134))))3.58

iqr (sqrt (hamming (normalize (bpFilter (triangle (square(normalize (x))),423,603))))) 3.15
log10 (abs (sum (pitch (blackman (split (bpFilter (normalize (x),1298,2558), 16131)))))) 0.91

... ...
mean (zcr (split (x,2048)) 0.72

mean (spectralFlatness (split (x,2048)) 0.71
mean (spectralCentroid (split (x,2048)) 0.68

1 shows the top 4 features found by EDS as well as the
results achieved with some common mp7 features (zero-
crossing rate, spectral flatness and SpectralCentroid), for
comparison. The fitness of the features is computed with
the Fisher criteria. Here are some details about the op-
erators selected by EDS in Table 1. See Zils and Pachet
(2004) for more details.

• split(X, n) does a n-point windowing of the signal.

• rms computes the square root of the mean of the squared
values of a vector.

• hpF ilter is a 2-order high pass Butterworth filter.

• Blackman and Bartlett are standard Blackman and
Bartlett windows.

• iqr is the inter quantile range of the data, i.e. the difference
between the 25% percentile value and the 75% percetntile
value.

• pitch is a speech-dedicated F0 analysis method, based
on autocorrelation, using the Praat toolbox (Boersma and
Weenink, 2005).

• Spectral F latness, Spectral Kurtosis, Spectral

Centroid andzcr are the standard MP7 operators.

The 4 best features are then fed to a number of ma-
chine learning algorithms, which are individually opti-
mized over their parameter space (e.g. number of near-
est neighbors for a knn classifier). We measure the pre-
cision by using 10-fold cross validation on the training
database. As shown in Table 2, the classification results
are near perfect (at best only one mis-classified instance).
The best model is a k-nn classifier using 2 inverse-distance
weighted nearest neighbors.

We apply the drum detector on sliding 3-second win-
dows on full songs to segment drum solo parts. For ro-
bustness, we only look for segments corresponding to at
least 3 successive windows classified as drums.

Table 2: Precision of learning algorithms for Drum detec-
tion

Algorithm Precision
k-Nearest Neighbor 0.99

Support Vector Machine 0.98
Neural Network 0.98

J48 pruned decision tree 0.97
Gaussian Mixture Model 0.93

2.3 Segmentation

Once large sections of music which only includes drum
solo are identified, we segment them in 4-beat drumbars
using a stripped-down version of the method described in
Scheirer (1998). Since beat tracking on drumtracks is usu-
ally a lot easier than on arbitrarily complex polyphonic au-
dio, we only consider one frequency band [0-400 Hz]. A
first pass is done to compute the bpm on 3-second buffers,
and a second pass is done with a beat-tracker tuned on the
most represented tempo found during the first pass in or-
der to localize the beats. Then, a 4-beat-long drumbar is
extracted every beat. Such a method has a number of dis-
advantages with respect to the metric of the musical piece.
First, this makes the assumption that the signature of the
piece is 4/4, which is true for a vast majority of popular
music pieces, but may not always be the case. Second, the
1-beat overlap of the drumbars extraction breaks the origi-
nal position of strong/weak beats. Further analysis is pos-
sible to segment more meaningful drum units, as shown
e.g. in Zaanen et al. (2003).

2.4 Metadata Extraction

Once a database of drumbars has been gathered, we in-
dex each sample with perceptually-meaningful metadata.
Again, we use the EDS system to find good specific sig-
nal processing features, and to optimize machine learn-
ing algorithms that use these features. We describe here
4 descriptors relevant for drumbars that we analyzed with
EDS. For each, we give the best feature found by EDS,
and the classification results using 10-fold cross valida-
tion. Each descriptor was trained on the same hand-
labeled database of 75 drumbars extracted from a swing
drumtrack generated by BFD (FXpansion, 2003). In order
to minimize the labeling effort, we model each problem
as a 3-class classification problem (low/medium/high).
However, these descriptors are intrinsically continuous,
numerical values. Hence, we force the training to use a
2-nn model for classification1, and re-use the same model
as a regression model2 in order to compute the values on
the final database.

• Energy : the perceptive energy of the drumbar, inde-
pendent of the RMS volume (all drumbars are RMS-

1i.e. a new instance is assigned to the most represented class
among its neighbors

2i.e. the value of a new instance is the weighted mean of its
neighbors values

414

normalized). The best feature found by EDS

Mean(Log(V ar(Split(Deriv(Square(X)), 1s))))
(1)

is consistent with previous studies on a popular mu-
sic database (Zils and Pachet, 2003). This yields a
precision of 0.89.

• Onset Density : the sensation of stroke density in
the drumbar. Drum rolls typically include very many
strokes, while some fills may include just a few kicks
and crashes. The best feature found by EDS

length(peaks(rms(hamming(split(X, 4096)))))
(2)

can be interpreted as a rough count of peaks of en-
ergy. The precision of the associated knn classifier is
0.92

• Presence of drums : the importance of tom and bass
drum strokes as opposed to cymbals and snare drums.
Jazz drummers typically use toms to give a ethnic
groove to a song, rather than cymbals and ride which
are typically used for swing. The best feature found
by EDS

SpectralDecrease(Deriv(Square(Norm(X))))
(3)

gives a classification precision of 0.84

• Presence of cymbals : the importance of high-
frequency sounds like cymbals and ride. The best
feature found with EDS

division(rms(lpfilter(X, 500, 44100)), rms(X))
(4)

is simply the ratio of high frequency energy over the
total energy of the signal. This achieves 0.82 preci-
sion.

3 Constraint-Based Concatenative
Synthesis

3.1 Incremental Real-Time Constraint Satisfaction

We define the interactive generation of drumtracks as a
real-time constraint-satisfaction problem (CSP). At any
time, the next drumbar to be selected as well as theM lat-
est past drumbars (M arbitrary, can be as large asn − 1)
constitute a sequence ofvariablesVn−M , Vn−M+1, ...,
Vn−1, Vn, whosevaluescan be taken from a finite data-
base ofN drumbars, called theirdomain. Each variable
Vi represents theith drumbar in the sequence. We call the
variableVn corresponding to the next drumbar to be se-
lected thecurrent variable, and theVn−i for i = 1..M the
past variables.

The problem is to successively assign values to each
variable so that the resulting sequence satisfies a set of
constraints defined by the user. The constraints may
change at any time, in an asynchronous manner. Obvi-
ously, at any time, the problem can only set the value of
the current variable : once a variable is played, its value
cannot be changed (“one can’t modify the past”). How-
ever, the choice of the next drumbar is influenced by the

Figure 3: An incremental CSP with 3 variables and 4 con-
straints.V3 is the current variable, andV1, V2 are the past
variables.

Figure 4: The same incremental CSP than in Figure 3,
after the increment operation.

past choices, as constraints holding on the current variable
may also hold on the past variables. The constraints typi-
cally hold on metadata of the assigned drumbars, such as
the one described in section 2.4.

To model the passing of time, we introduce the no-
tion of incrementoperation. Each time a value is assigned
to the current variable, the problem is incremented, i.e.
a new variable is added to the problem. The former cur-
rent variable becomes a past variable, and the new variable
represent the next current variable.

Figures 3 and 4 explicit the structure of the problem,
and illustrate the increment operation. In Figure 3, the
CSP at a given iterationi includesM = 3 variables, one
current and 2 past, with some constraints (theG andL
circles) holding on them. A value is selected forV3, and
the corresponding audio is scheduled to be played. At the
next iterationi + 1, the CSP is incremented, i.e. a new
variableV4 is added, which becomes the new current vari-
able. Note that the scope of the constraints is automati-
cally modified to also hold on the newly added variable.
We will explicit two strategies for such a mechanism in
Subsection 3.3.2 below.

3.2 Incremental Adaptive Search

The technique we propose is based on an adaptation of
local search techniques to constraint satisfaction, called
adaptive search (Codognet and Diaz, 2001). In our con-
text, since only one variable can be modified at a time (the
current variable), there is no combinatorial explosion of
the search space. A complete enumeration of all possible
values for the current variable is only the size of the drum-
bar database. Adaptive search is mainly targeted at off-
line problems where all values must be assigned simulta-
neously, and a completeNM enumeration is intractable,
e.g. in playlist generation (Aucouturier and Pachet, 2002).
However, adaptive search’s formulation of constraints as
simple cost functions is still well suited for our problem
which is clearly over-constrained : it is likely that the con-
straints cannot all be satisfied at the same time. The cost

415

of a constraint represents ”how bad” the constraint is sat-
isfied, for a given assignment of variables.

More precisely, we define:

• the costF (Vi, C) of a given variableVi with value
Xi, with respect to a given constraintC, which rep-
resents ”how badly”Xi satisfiesC

• the costF (Vi) of a given variableVi with valueXi,
which is the weighted sum of its costsF (Vi, C) with
respect to each constraint holding onVi. Each con-
straint has a weight, which enables to balance the
importance of some constraints over some others.
Section 4.2 illustrates the importance of constraint
weighting.

• the global problem costF (CSP), which is the sum
of theF (Vi) for all Vi in the problem.

Assigning a new value to the current variable modifies the
costsF (vn, Ci) of all the constraintsCi holding onvn,
and in turn modifies all the costsF (Vi) of all the variables
within the scope of one of several constraintsCi, and fi-
nally the global problem costF (CSP).
The algorithm works as follows:

• Start with an = 1 problem, i.e. one current variable,
and no past.

• Repeat :

– Find the best possible value forVn by trying
successively all the values in the domain, and
select the value that minimizesF (CSP).

– Assign this value toVn.
– Increment the CSP. (notablyn = n + 1);

The first step of the repeat loop above may take a lot of
time, depending on the size of the current variable’s do-
main. However, it can be interrupted at any time, to return
the best solutionso far.

3.3 Local and Global Constraints

3.3.1 Constraints as Cost functions

The main interest of this algorithm is that constraints are
simply seen as cost functions, and hence are very easy to
define. For instance, the ”all different” constraint stating
that all variables should have different values is defined
as follows:
AllDifferentCt.cost ()
Return 1 - the number of different values
in the problem divided by the size of the
sequence.

More complex constraints can be defined as easily.
For instance,

• distance constraint : forces each variablesVi in scope
to have valuesXi for which a given numerical meta-
datap(Xi) is as close as possible as a target value
pt (e.g. ”all these variables should have an energy of
0.1”). The corresponding cost function is defined as
follows :

DistanceCt.cost()
Return the mean distance between the
p(Xi) and pt, i.e. 1

M

∑

M−1

i=0
|p(Xi) − pt|

2

• continuity constraint : holds on a set of variable
Vi, i = 1..s. It forces each duplet of successive
variables{Vi, Vi+1} to have values{Xi, Xi+1} for
which a given numerical metadatap has similar val-
ues{p(Xi), p(Xi+1)}. The corresponding cost func-
tion can be defined as follows :

ContinuityCt.cost()
Return the mean distance between
all p(Xi) and p(Xi+1), i.e.
1

M

∑

M−2

i=0
|p(Xi) − p(Xi+1)|

2

In practice, the cost functions are implemented more
efficiently, by passing as argument the lastly modified
variable to the cost functions (which in our context, is
always the current variableVn). This information is used
to compute only the differential cost, instead of the whole
cost.

For instance, the cost function of the distance con-
straint can be defined in such a differential way :
DistanceCt.cost(Variable v)
Returns 1

M
(oldcost ∗ (M − 1) + |p(Xn) − pt|

2)

This savesM−1 database accesses to compute thep(Xi),
andM − 1 substractions and multiplications. Such opti-
mizations are important, as the cost function of each con-
straint is calledN times at each iteration, whereN is the
size of the current variable’s domain.

3.3.2 Local and Global Constraints

In the context of incremental CSP, and for the clarity of
further discussions in section 4.2, we distinguish 2 types
of constraints :

• Local Constraints only hold on the current variable.
They influence the selection of the next drumbar by
only looking at its intrinsic properties, without tak-
ing past values into account. Typically, a distance
constraint is a local constraint.

• Global Constraints hold on the current variable plus
some or all of the past variables. They influence the
selection of the best drumbar by also accounting for
the values of the past variables. Typically, a continu-
ity constraint is a global constraint, trying to select
new values so that they are continuous with the past,
already selected values.

Upon increment of the CSP, local and global con-
straints have a different behavior. All local constraints up-
date their scope by removing the previous current variable
(now vn−1), and adding the new current variablevn. All
global constraints simply add the newly added variable to
their scope. This mechanism is illustrated in Figures 3 and
4: before the increment, the global constraintsG1 andG2

hold on{V1, V2, V3} and the local constraintsL1 andL2

hold only onV3, which is the current variable. After in-
crement,G1 andG2 modify their scope to also include the
new current variableV4, while L1 andL2 now only hold
onV4.

416

Figure 5: The real-time implementation of the system, us-
ing 4 concurrent threads. See main text for explanation of
steps 1 to 5.

3.4 Real-time Implementation

The real-time implementation of the system (done in Java)
uses several concurrent threads. Asolver thread is given
a CSP, and solves it using the algorithm described in sec-
tion 3.2. A audio thread is in charge of the continuous
playback of the drumtrack, by concatenating the values of
the successive current variables. Aschedulerthread iter-
atively queries the solver for the best solution so far and
schedules the corresponding audio for playback by the au-
dio thread. Finally, acontrol thread can modify at any
time the constraints holding on the CSP which the solver
is currently working on.

Figure 5 explicits the interactions between the 4
threads. At any time, the audio corresponding to the lat-
est selected drumbar is playing, and a new value must be
scheduled to immediately start after it finishes at endtime
ti.

1. At timeti −∆, the scheduler wakes up, and asks the
solver for the best value it has found so far for the
current variable, given all the current constraints and
the values of the past variables. The solver replies
and increments immediately to start looking for the
next drumbar.

2. The scheduler retrieves the audio corresponding to
the drumbar found at step1. In the current implemen-
tation, this includes reading and decoding a .mp3 file
between a start and end date through a local network,
which may take a variable timeδi.

3. At time ti − ∆ + δi, the scheduler thread schedules
the decoded audio for the current drumbar for play-
back at the exact ending timeti of the latest drumbar,
which is currently being played. The choice of∆ is
made a priori, to ensure thatti − ∆ + δi < ti, i.e.
∆ > δi, ∀i. In our current implementation, we chose
∆ = 500ms.

4. The scheduler sleeps untilti+1 − ∆, havingti+1 =
ti + di, wheredi is the duration of the audio just
scheduled. This mainly gives the priority back to

the solver, which keeps scouring the database for the
next value to be scheduled atti+1.

5. At any time, the control thread may modify the con-
straints holding on the CSP. This in turn modifies
the values found by the solver, which enables the
real-time high-level control of the drummer’s output.
Such changes can be done manually by a user via
a GUI, or result of the analysis of an interaction, as
proposed below in Section 4.1.

4 Experiments

4.1 Midi interaction

We describe here preliminary experiments in which we
use the drummer agent in interaction with a human player
playing a midi keyboard. We automatically build a data-
base of 150 drumbars extracted from a set of demo songs
recorded with BFD (FXpansion, 2003), and automatically
compute the associated metadata (see Section 2.4). The
drumtrack is constrained to use only drum samples with
a bpm of 120, so that the resulting concatenation has a
steady beat.

The midi performance of the human player is analysed
in real-time to extract to following information :

• energy : the mean velocity of thenote-on Midi
messages, computed over 500 ms windows (value
∈ [0, 127]).

• onset density : the ratio number ofnote-on Midi
messages received over 500 ms windows, to a prac-
tical maximum of 10 notes3 (value∈ [0, 1]).

• pitch : the mean midi pitch of thenote-on Midi
messages, computed over 500 ms windows (value∈
[0, 1]).

The three streams of midi metadata are converted us-
ing a transfer function, and sent to the drummer which
modifies its local constraint set accordingly. The drummer
thus generates a drumtrack by satisfying constraints cre-
ated by analysing the Midi performance. For instance, a
new Midi energy value modifies a local distance constraint
holding on the drumbars’ energy metadata, i.e. which
forces the energy of the newly selected drumbars to be
as close as possible to the input midi energy. Similarly,
low midi pitch can be inverse converted, and mapped to a
local constraint holding on the presence of cymbal meta-
data, so that melodies played on the lower octaves of the
midi instrument trigger drum track that use a lot of high
pitched sounds, and conversely, high pitched melodies
trigger a lot of bass drum and tom sounds. Mappings be-
tween midi performance data and audio drumtrack meta-
data/constraints can be arbitrary complex. In the current
system, the mappings are hardcoded, but they could be
modified in real-time. This issue of mapping between

3corresponding to one note every 50 ms. Pachet (2002)
analysed phrases played by John McLaughlin said to be one
of the fastest jazz guitarists and found a minimum inter onset
time of about 60 milliseconds, so this works as a practical lower
bound.

417

Midi performance and Machine generated music parame-
ters is discussed at length in Rowe (1993).

Figure 6 shows both the energy of the midi perfor-
mance and the energy of the drumtrack generated by the
drummer over time. We observe that the drummer is able
to follow the energy of the performance very finely, with
very small latency (typically the duration of one drumbar),
and a precision which depends on the available energy val-
ues in the database.

Figure 6: Energy of the Midi performance (solid line)
and energy of the drumbars returned by the solver (dashed
line) over time.

4.2 Autonomy/Reactivity Trade-off

While technically satisfying, such fully reactive behav-
iour is often not suitable in a music interaction context,
in which one wants the interacting agent to have both mu-
sical realism and autonomy. For instance, it may be unre-
alistic to instantly switch from very low to very high en-
ergy. In our system, we use global constraints to counter-
balance the immediate reactivity created by the local con-
straints. Consider 2 constraints holding on the drumbars’
energy:

• a local DistanceConstraint which forces the drum-
track’s energy to match the midi performance’s en-
ergy (as above)

• a global ContinuityConstraint, which forces the con-
secutive selected drumbars to have similar energy

These 2 constraints are contradictory: if the performance
energy suddenly increases, highly energetic drumbars will
have a low cost according to the local distance constraint,
but a high cost according to the global continuity con-
straint. On can manipulate the total cost of a drumbarxi

by putting weights on the local and global constraints:

cost(xi) = α.costlocal(xi) + β.costglobal(xi) (5)

and a variety of behaviours can be achieved ranging be-
tween complete reactivity (0-weight on the global con-
straint) and complete autonomy (0-weight on the local

Figure 7: Drummer behaviour with different ratior of lo-
cal to global weight. (A)r = ∞ : the drummer reacts
immediately. (B)r = 2. (C) r = 1. (D) r = 1

2 . (E) r = 0:
complete autonomy of the drummer.

constraint). Figure 7 shows the behaviour of the drummer
subjected to a typical Midi energy input, using different
ratio between local weight and global weight. With in-
termediate settings, the drummer follows the input energy
while still preserving continuity, thus yielding a more mu-
sical output.

5 Conclusion and Future Work

We described a real-time drummer inspired by Music In-
formation Retrieval techniques. It generates an audio
drum-track by concatenating drum segments automati-
cally extracted from pre-existing musical files. The drum-
track can be controlled in real-time by local and global
constraints holding on the metadata of the drumbars, us-
ing a custom constraint satisfaction algorithm based on
local search. We designed several drum track audio de-
scriptors: drum detection, energy, onset density, presence
of drums and presence of cymbals. We also reported on
simple experiments made in the context of a virtual duet
between the system and a human pianist, and show that
the weights between local and global constraints can be
manipulated to control the autonomy/reactivity of the sys-
tem.

This paper describes a basic mecanism of competitive
local/global constraint satisfaction, which can be extended
to support additional metadata, more refined constraints,
and more complex interaction mappings. Audio drumbars
can be automatically indexed with more advanced rhyth-
mic descriptors, such as syncopation, strong/weak beats,
or style (e.g. for jazz drumming : swing, bebop, latin,
ethnic, free, etc.). More complex autonomy behaviours
can be achieved with additional global constraints, such as
distribution constraints (e.g. “60% of the drumbars should
use a latin pattern”), or sequence constraints (e.g. “a fill
with a lot of toms every 4 drumbars”). Additional infor-
mation can be extracted from the Midi performance (no-
tably metric analysis to match the audio). Finally, con-

418

straints and mappings can also be changed in real-time
based on the midi analysis.

6 Acknowledgement

This work uses JSyn, a Java synthesis library (Burk,
1998), and MidiShare, a real-time multi-task MIDI oper-
ating system developed by GRAME (Orlarey and Lequay,
1989). It has been partially founded by The SemanticHifi
European IST project.

References

Jean-Julien Aucouturier and François Pachet. Scaling up
music playlist generation systems. InProceedings of
The IEEE International Conference on Multimedia and
Expo, Lausanne (Switzerland), August 2002.

Jean-Julien Aucouturier, François Pachet, and Peter
Hanappe. From sound sampling to song sampling. In
Proceedings of the International Conference on Mu-
sic Information Retrieval (ISMIR), Barcelona, Spain.,
2004.

Jeff A. Bilmes. Techniques to foster drum machine ex-
pressivity. InProceedings of the International Com-
puter Music Conference, 1993.

Paul Boersma and David Weenink. Praat: doing phonetics
by computer. Available: http://www.praat.org/, 2005.

Phil Burk. Jsyn, a real-time synthesis api for java.
In Proceedings of the International Computer Mu-
sic Conference (ICMC). ICMA, 1998. available:
http://www.softsynth.com/jsyn/.

Philippe Codognet and Daniel Diaz. Yet another local
search method for constraint solving. InProceedings
of the AAAI Fall 2001 Symposium, Cape Cod, MA, No-
vember 2001.

FXpansion. Bfd, premium acoustic drum library module,
2003. website: http://www.fxpansion.com.

Perfecto Herrera, Alexandre Yeterian, and Fabien
Gouyon. Automatic classification of drum sounds: a
comparison of feature selection methods and classifica-
tion techniques. InProceedings of Second International
Conference on Music and Artificial Intelligence, Edin-
burgh, Scotland, 2002.

John Koza.Genetic Programming. MIT Press., 1992.

Ari Lazier and Perry Cook. Mosievius: Feature-driven in-
teractive audio mosaicing. InProceedings of the COST-
G6 Conference on Digital Audio, London, UK, Septem-
ber 2003.

Yann Orlarey and Herve Lequay. Midishare: a real time
multitasks software module for midi applications. In
Proceedings of the 1989 International Computer Music
Conference, San Francisco. Computer Music Associa-
tion, 1989.

François Pachet. Rhythm as emerging structure. InPro-
ceedings of the International Computer Music Confer-
ence, Berlin, Germany, 2000.

François Pachet. Music interaction with style. InProceed-
ings of the International Computer Music Conference,
2002.

François Pachet and Olivier Delerue. On-the-fly multi-
track mixing. InProceedings of AES 109th Convention,
Los Angeles, USA., 2000.

François Pachet and Pierre Roy. Musical harmonization
with constraints: A survey. Constraints, 6(1):7–19,
2001.

Jouni Paulus and Anssi. Klapuri. Measuring the similar-
ity of rhythmic patterns. InProceedings, 3rd Inter-
national Conference on Music Information Retrieval,
Paris, France, October 2002.

Robert Rowe. Interactive Music Systems. MIT Press,
Cambridge, Massachusetts, 1993.

Eric Scheirer. Tempo and beat analysis of acoustic musi-
cal signals.Journal of the Acoustic Society of America,
103(1):588–601, January 1998.

Eric Scheirer and Malcolm Slaney. Construction and eval-
uation of a robust multifeature speech/music discrimi-
nator. InProceedings of ICASSP, 1997.

Diemo Schwarz. The caterpillar system for data-driven
concatenative sound synthesis. InProceedings of the
COST-G6 Conference on Digital Audio Effects (DAFx),
London, UK., September 2003.

Nao Tokui and Hitoshi Iba. Music composition by means
of interactive ga and gp. InProceedings of IEEE Sys-
tems, Man and Cybernetics, 2001.

Toontrack. Dfh, drumkit from hell, 2003. website:
http://www.toontrack.com.

Kazuyoshi Yoshii, Masataka Goto, and Hiroshi G. Okuno.
Automatic drum sound description for real-world music
using template adaptation and matching methods. In
Proceedings of the International Conference on Music
Information Retrieval (ISMIR), Barcelona, Spain, 2004.

Menno Zaanen, Rens Van Bod, and Henkjan Honing. A
memory-based approach to meter induction. InPro-
ceedings of the ESCOM, pages 250–253., 2003.

Aymeric Zils and François Pachet. Musical mosaicing.
In Proceedings of the COST-G6 Conference on Digital
Audio, Limerick, Ireland, December 2001.

Aymeric Zils and François Pachet. Extracting automati-
cally the perceived intensity of music titles. InProceed-
ings of the 6th COST-G6 Conference on Digital Audio
Effects (DAFX03), London, UK, September 2003.

Aymeric Zils and François Pachet. Automatic extraction
of music descriptors from acoustic signals using eds. In
Proceedings of the 116th AES Convention, Berlin, May
2004.

Aymeric Zils, François Pachet, Olivier Delerue, and Fa-
bien Gouyon. Automatic extraction of drum tracks from
polyphonic music signals. InProceedings of Web De-
livery of Music (WEDELMUSIC), December 2002.

419

