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ABSTRACT

An audio fingerprint is a compact yet very robust rep-

resentation of the perceptually relevant parts of audio

content. It can be used to identify audio, even when
of severely distorted. Audio compression causes small

changes in the fingerprint. We aim to exploit these small

fingerprint differences due to compression to assess the
perceptual quality of the compressed audio file. Anal-

ysis shows that for uncorrelated signals the Bit Error

Rate (BER) is approximately inversely proportional to the
square root of the Signal-to-Noise Ratio (SNR) of the sig-

nal. Experiments using real music confirm this relation.
Further experiments show how the various local spectral

characteristics cause a large variation in the behavior of

the fingerprint difference as a function of SNR or the bi-
trate set for compression.

1 INTRODUCTION

Identification of music on the Internet is usually done by
searching in the metadata describing the music content.

Metadata like song title, artist, etc., however, is often inco-

herent or misleading [1], especially on popular unmoder-
ated Peer-to-Peer (P2P) file-sharing networks like KaZaA

(www.kazaa.com) and eDonkey (www.edonkey.com). A
solution is to identify the music based on the content.

Identification, however, is often not enough. The per-

ceptual quality of a song compressed using MP3 at a bi-
trate of 32 kbps is totally different from the perceptual

quality of the CD-recording of the same song. There-

fore, a content-based indication for the perceptual quality
is needed. The Music2Share project proposes to use audio

fingerprints for both identification and quality assessment

of unknown content on a P2P network [2].
Audio fingerprints are compact representations of the

perceptually relevant parts of audio content that can be

used to identify music based on the content. A fingerprint-
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ing system consists of two parts: fingerprint extraction and

a matching algorithm. The fingerprints of a large number

of songs are usually stored in a database. A song is iden-
tified by comparing its fingerprint with the fingerprints in

the database. The procedure for music identification using

fingerprints is schematically shown in Figure 1.
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Figure 1: Music identification using an audio finger-

print. The extracted audio fingerprint is matched against a
database with pre-computed fingerprints and metadata.

Fingerprinting applications are e.g. identification of

songs or commercials being played on radio or television,
music identification using a cell phone (e.g. Shazam [6]),

and filtering for file sharing applications [3, 4].

Most audio fingerprinting systems derive their finger-
print from a time-frequency representation, e.g. using

short-term Fourier transforms. They mainly differ in their
choice of features to construct the fingerprint, e.g. spec-

tral flatness features [5], spectral peaks [6], Fourier coeffi-

cients [7], Mel-Frequency Cepstrum Coefficients (MFCC)
[8], and energy differences between frequency bands [3].

Fingerprints are robust to many kinds of processing:

encoding using different coding schemes or bit rates, sub-
sequent Digital-to-Analog (D/A) and Analog-to-Digital

(A/D) conversions, small changes in play-out speed, etc.

The fingerprints of two arbitrary pieces of music are very
different, while fingerprints originating from the same

music recording, but which differ due to a limited amount

of processing or distortion, are only slightly different.
We aim to exploit the small fingerprint differences due

to compression to assess the perceptual quality of the com-

pressed audio file. For the time being we limit ourselves
to compression using the popular MP3 format. This setup

is shown schematically in Figure 2. FX(n, m) denotes
the fingerprint bits of the original, undistorted recording,

X , and FY (n, m) denotes the fingerprint bits of the com-
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Figure 2: Relating differences in audio fingerprints of two

versions of the same recording, X and Y , to differences
in perceptual quality of these recordings.

pressed recording, Y . The difference between the finger-
prints d(FX(n, m); FY (n, m)) is related to the (percep-

tual) difference between the songs dπ(Song X ; Song Y ).
We use the Philips audio fingerprinting system [3] be-

cause it is well documented, highly robust against com-

pression and differences in fingerprint can be related to

parameters used in MP3 compression. Recently, we have
worked on a model of the fingerprint generation of an un-

correlated signal using the Philips system [9]. This paper

focuses on the difference between fingerprints of a song
and a distorted version of that same song.

Section 2 of the paper presents details of the audio fin-

gerprinting system used for identifying songs, Section 3
analyzes the robustness of a fingerprint to MP3 compres-

sion of a song and presents experimental results, Section
4 draws conclusions and outlines future work.

2 PHILIPS AUDIO HASH

Figure 3 shows an overview of the fingerprint extraction
stage of the Philips system [3]. The audio signal is first

segmented into frames of 0.37 seconds with an overlap

factor of 31/32, weighted by a Hanning window. The
compact representation of a single frame is called a sub-

fingerprint. In this way, it extracts 32-bit sub-fingerprints

for every interval of 11.6 ms (370/32 ms). Due to the large
overlap, subsequent sub-fingerprints have a large similar-

ity and slowly vary in time. The fingerprint of a song con-
sists of a sequence of sub-fingerprints, which are stored in

a database.

To extract a 32-bit sub-fingerprint for every frame, 33
non-overlapping frequency bands are selected from the es-

timated Power Spectral Density (PSD). These bands range

from 300 Hz to 2000 Hz and are logarithmically spaced.
Haitsma and Kalker report that experiments have

shown that the sign of energy differences is a property that

is very robust to many kinds of processing [3]. We denote
the energy of frequency band m of frame n by E(n, m).
Energy differences are computed in time and frequency:

ED(n, m) = E(n, m) − E(n, m+1)
− (E(n−1, m)− E(n−1, m+1)). (1)

The bits of the sub-fingerprint are derived by

F (n, m) =

{
1 ED(n, m) > 0
0 ED(n, m) ≤ 0

, (2)

where F (n, m) denotes the mth bit of sub-fingerprint n.

F o u r i e r
T r a n s f o r mF r a m i n g

| F F T |

E n e r g y
C o m p u t a t i o n

B a n d
D i v i s i o n

F ( n , 0 )

B i t  D e r i v a t i o n

å x 2
å x 2

å x 2
å x 2

+
- T -

+ > 0

+
- T -

+ > 0

+
- T -

+ > 0

F ( n , 1 )

F ( n , 3 1 )

F o u r i e r
T r a n s f o r mF r a m i n g

| F F T |

E n e r g y
C o m p u t a t i o n

B a n d
D i v i s i o n

F ( n , 0 )

B i t  D e r i v a t i o n

å x 2
å x 2

å x 2
å x 2

+
- T -

+ > 0+
- TT -

+ > 0

+
- T -

+ > 0+
- TT -

+ > 0

+
- T -

+ > 0+
- TT -

+ > 0

F ( n , 1 )

F ( n , 3 1 )

Figure 3: Philips audio fingerprinting extraction [3]. T
indicates a unit-time delay.

Figure 4(a) shows an example of a fingerprint. White

parts indicate positive energy differences (i.e. F (n, m) =
1). The small side of the fingerprint block is the frequency
direction, consisting of the 32 bits corresponding to the

differences between the 33 frequency bands. The long

side of the block corresponds to the temporal dimension.
The system is capable of identifying a segment

of about 3.3 seconds of music - generating 256 sub-

fingerprints - in a large database, even if the segment is
degraded due to a variety of signal processing operations.

A match is found if the Bit Error Rate (BER) between
the extracted fingerprint and the fingerprint in the database

falls below a threshold of 0.35.

3 FINGERPRINT ROBUSTNESS
ANALYSIS TO MP3 COMPRESSION

When the song is subject to compression, the fingerprint

changes slightly. To indicate the effect of MP3 compres-
sion on the fingerprint extraction, Figures 4(c)-4(e) show

the difference patterns of the fingerprint of a recording
at different bit-rates relative to the fingerprint of the CD-

quality recording of the same song. The difference be-

tween fingerprints can be defined as:

Fdiff (n, m) = XOR (FX(n, m), FY (n, m)) (3)

The black sections mark the fingerprint differences, white

sections indicate similarity between the fingerprints.
The goal is to relate the perceptual quality of the com-

pressed version of the song (relative to the original record-

ing) to features of the observed difference in the corre-
sponding fingerprints, f (Fdiff (n, m)). The intended use

is illustrated in Figure 4(f). The central research question

is how to define the quality distance measure and the func-
tion f(·) operating on Fdiff (n, m) (e.g. BER).

Section 3.1 presents a simple model to analyze the re-

lation between Signal-to-Noise Ratio (SNR) and BER for
uncorrelated signals, Section 3.2 discusses the relation be-

tween the spectral content of a song and the robustness of

the fingerprint bits, Section 3.3 presents details about two
fingerprint distance measures used in the experiments pre-

sented in Section 3.4.

3.1 Analysis using uncorrelated signals

In previous work we have modeled the Philips fingerprint

extraction for uncorrelated, stationary data sources [9].
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Figure 4: Fingerprints for an excerpt of ’Anarchy in the U.K.’ by the Sex Pistols. (a)-(b) Fingerprints of (a) the original

and (b) of an MP3 compressed version encoded at 128 kbps; white indicates F (n, m) = 1 (c-e) Differences between the

fingerprints of the original and an MP3 compressed version encoded at (c) 128 kpbs (d) 80 kpbs and (e) 32 kbps. The
black positions mark the differences. (f) Relating differences between two fingerprints Fdiff to a quality indication.

Of course, music is strongly correlated and highly non-

stationary. These models, however, help to understand the
effect of key signal and fingerprint parameters such as the

frame length and the amount of frame overlap.

Here we extend the analysis to the situation where
both the signal and the additive noise are assumed to be

zero-mean Gaussian, independent identically distributed

(iid) data sources. Such an analysis relates the BER to
SNR. Although SNR is not a realistic real-life quality

measure, it is a suitable distortion measure at the abstrac-
tion level of this analysis.

To simplify the analysis, the fingerprints are subjected

to two constraints. First, for these data sources the BER is
independent of the number of frequency bands. Therefore,

without loss of generality, we limit the analysis to two fre-

quency bands. Second, for these data sources, the amount
of frame overlap has no influence on the BER when the

fingerprints are perfectly aligned. Therefore, we assume

non-overlapping windows.
Our first analysis starts with a simple model for the

energy differences, ED(n, m), that lead to the fingerprint

bits using Eq. (2). Index m is omitted, since the analysis
assumes two frequency bands, resulting in energy differ-

ences ED(n, m) having just one frequency index. Let
EDX(n) denote the energy differences of signal X , and

EDW (n) denote the energy differences of the noise, W .

In case of additive noise, the signal EDY (n) becomes:

EDY (n) = EDX(n) + EDW (n). (4)

FX(n) is generated by taking the sign of EDX(n):

FX(n) =

{
1 EDX(n) > 0
0 EDX(n) ≤ 0

. (5)

The BER can now be expressed in terms of probabilities:

BERtemp = P [FX(n) 6= FY (n)]
= 2P [EDX(n) > 0, EDY (n) ≤ 0]
= 2P [EDX(n) > 0,

EDW (n) ≤ −EDX(n)]. (6)

Since both EDX(n) and EDW (n) are mutually indepen-

dent, zero-mean Gaussian iid data sources, all signals are
fully characterized by their variance:

VAR[EDX(n)] = σ2

EDX

∝ σ2

X

VAR[EDW (n)] = σ2

EDW

∝ σ2

W

VAR[EDY (n)] = σ2

EDX

+ σ2

EDW

(7)

We will now express both SNR and BER in terms of the

variances σ2

X and σ2

W . The SNR is defined as:

SNR =
VAR[X ]

VAR[Y − X ]
=

σ2

X

σ2

W

(8)

By simple geometrical arguments using the joint PDF
of EDX(n) and EDW (n), fEDX ,EDW

(x, w), it can be

shown that the BER is equal to:

BERtemp = 2P [EDX(n) > 0,

EDW (n) ≤ −EDX(n)]

= 2
∫ 0

−∞

fEDW
(w)

{∫ −w

0

fEDX
(x)dx

}
dw

=
1
π

arctan
(

σEDW

σEDX

)

=
1
π

arctan

(√
VAR[EDX ]

VAR[EDY − EDX ]

)
(9)

=
1
π

arctan
(

1√
SNR

)
(10)

To illustrate the geometrical argument, Figure 5(a)

shows the joint PDF fEDX ,EDW
(x, w). The axes of the

ground plane represent the unit-variance variables EDX

σED
X

and EDW

σED
W

. The PDF is now rotation-symmetric. The vol-

ume V ol=P [EDX>0, EDW≤−EDX ] can be computed
by rotating the light shaded area around the fEDX ,EDW

-

axis over an angle φ. Since the total volume of the PDF is

equal to 1, the relation between φ and the shaded volume

is given by V ol = φ
2π

. The line EDX = −EDW has an

angle φ = arctan
(

σED
W

σED
X

)
with the EDW -axis.
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Figure 5: Robustness to additive noise (analytical and experimental) (a) Illustrating the geometrical argument used to

compute P [FX(n) = 1, FY (n) = 0], which is a volume in the joint-PDF fX,W (x, w) (b) SNR vs. BER for a simple

models using iid Gaussian random variables.

Figure 5(b) shows the SNR vs. BERtemp plot for
both experimental fingerprint of Gaussian zero-mean iid

data and the analytical results of Eq. (10). The analytical

curve is shifted with respect to the experimental curve.
This deviation is caused by the computation of the finger-

prints in the frequency domain instead of the time domain.

In the frequency domain, the spectrum of Y (n) is

related to the spectra of X(n) and W (n):

|Ŷ (k)|2 = |X̂(k) + Ŵ (k)|2

= |X̂(k)|2+ |Ŵ (k)|2+ 2Re
(
X̂(k)Ŵ (k)

)
(11)

where Ŷ (k) denotes the Fourier transforms of Y (n) and

Ŵ (k) denotes the complex conjugate of Ŵ (k).
In order to compute the BER using Eq. (9), the vari-

ances of EDX and EDY are expressed in terms of fre-

quency and time domain signal variances [10]:

VAR [EDX ]∝ VAR
[
|X̂(k)|2

]

∝ σ4

X

VAR [EDY − EDX ]∝ VAR
[
|Ŷ (k)|2 − |X̂(k)|2

]

∝ σ4

W + 2σ2

Xσ2

W

Now the BER can be expressed as:

BERfreq =
1
π

arctan

(√
σ4

W

σ4

X

+ 2
σ2

W

σ2

X

)
(12)

Figure 5(b) also shows the curve for the BERfreq expres-

sion, which fits perfectly to the experimental data. For
SNR ≫ 1 the expression can be further simplified to:

BERfreq ≈
1
π

arctan
(√

2
σW

σX

)
≈

√
2

π

σW

σX

(13)

This implies that for sufficiently large SNR, the fin-
gerprint BER is reduced by a factor 10 when the SNR is

increased by 20 dB.

3.2 Content dependence

Figures 6(a) and 6(d) shows the BER between original and

a compressed version for blocks of 64 sub-fingerprints of

two songs: ‘Requiem - Pie Jesu’ composed by Fauré and
‘Motörhead’ by Motörhead, respectively. Two observa-

tions can be made from this graph: First, there is a large

inter-song variance. Different songs compressed at the
same bit-rate show different average behavior. Second, a

song can have a large intra-song variance as well. Fauré

shows a large spread in BER behavior, while the finger-
print blocks of Motörhead show a very small spread.

The spectrograms are shown in Figures 6(b) and 6(e).

The horizontal axis shows the starting time of a frame,
the vertical axis shows the frequency dimension and the

gray-value indicates the magnitude in the energy spec-
trum of each frame in decibel (dB). Lighter values indi-

cate larger magnitude. Comparing Figures 6(a) and 6(d)

with Figures 6(b) and 6(e), respectively, clearly relates the
BER of a block to spectral characteristics of that region

in time. The spectrogram of Fauré shows distinct peaks

and regions which have near-zero energy. These regions
in the spectrogram containing near-zero energy generate

near-zero ED(n, m) signals which are rather sensitive to

compression artifacts. Since these valleys in the spectro-
gram do not occur uniformly over time, they cause a large

spread in time of the BER.

The difference in behavior of these regions is also re-
flected in the fingerprint blocks. Figures 6(c) and 6(f)

show two differences between fingerprint blocks having
the same number of bit errors. Figure 6(c) corresponds

to a part of Fauré (having relatively little energy) while

Figure 6(f) corresponds to a part of Motörhead.

3.3 Distance measures

The large intra-song variance might be reduced by using
other distance measures than the BER, e.g. average length

or average area of runs of fingerprint errors. In this paper
we use two distance measures: BER based on the ham-

ming distance and BER based on the weighted hamming
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Figure 6: (a,d) Bit Error Rate as function of time, (b,e) Spectrograms and (c,f) fingerprint differences between original

recording and MP3@32 kbps of (a-c) Fauré and (d-f) Motörhead.

distance. The former is defined as:

BER =
1

32N

N−1∑

n=0

31∑

m=0

Fdiff (n, m), (14)

the latter is defined as:

BERW =

N−1∑

n=0

31∑

m=0

H(n, m)Fdiff (n, m)

N−1∑

n=0

31∑

m=0

H(n, m)

. (15)

Certain regions can be excluded by setting the weights

H(n, m) to 0. For the experiments, the weights are set

based on the ED(n, m) signal.
Let EDmax

h (n, m) denote the maximum value of

|ED(n, m)| within a sliding window of size h. The binary
weight H(n, m) is zero if its corresponding ED(n, m)
value is smaller than a signal dependent threshold T :

H(n, m) =

{
0 EDmax

h (n, m) ≤ T

1 EDmax
h (n, m) > T

(16)

3.4 Experiments

Experiments have been performed on fragments of 39 sec-

onds for 11 songs. To keep the figures comprehensible
the results presented here are limited to the 2 songs men-

tioned earlier, viz. Fauré and Motörhead. The fingerprints

of these fragments were split into 13 non-overlapping fin-
gerprint blocks consisting of 256 sub-fingerprints.

When compressing a song, the perceptual quality can

be controlled by selecting the bitrate. This indirectly influ-
ences the difference between the fingerprints. Two quality

measures have been used: the MP3 bitrate and the SNR.

The weights H(n, m) were assigned using a threshold
T equal to the global median value of |ED(n, m)| and a

window size h of 32 frames. Depending on (the part of)

the song, the 8-35% of the bits was excluded.
Figure 7 shows the experimental results. Figures 7(a)

and 7(c) use BER, while 7(b) and 7(d) use BERW ; Figure
7(a) and 7(b) use MP3 bitrate as quality indicator while

7(c) and 7(d) use SNR. The lines indicate the results av-

eraged over the 13 fingerprint blocks, the errorbars and
shaded regions indicate the corresponding standard devi-

ations. Both SNR - in dB - and BER are displayed on

a logarithmic scale. A straight line in a plot using loga-
rithmical scales indicates a power law relation ship. From

Figures 7(c) and 7(d), the relation between the expected

value of the BER and the SNR confirms Eq. (13):

E[BER] ∝ 1√
SNR

=
σW

σX

. (17)

From the experiments it can be concluded that the

BER between fingerprints originating from the same au-
dio file is inversely proportional to the square root of the

SNR of one song with respect to the other. Relating BER
to bitrate is less straightforward, since compressing differ-

ent songs at the same bitrate yield different SNR.
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Figure 7: Average BER in 13 fingerprint blocks for two songs. The errorbars and shadings indicate the standard deviation

of the BER at a specific bitrate or SNR level. (a-b) MP3 bitrate vs. (a) BER (b) BERW ; (c-d) SNR vs. (c) BER (d) BERW

4 CONCLUSION AND FUTURE WORK

Experiments have indicated how differences in audio fin-

gerprint due to compression are related to the spectral

characteristics of the audio signal. Variations in these lo-
cal spectral characteristics cause a large variation in the

behavior of fingerprint differences for a given compres-

sion bitrate or SNR. We have shown that this variation
can be reduced when the fingerprint bits related to spec-

tral regions with near-zero energy are excluded. It was

determined both theoretically and experimentally that the
BER is approximately inversely proportional to the SNR

of the signal.
Future work concerns the further exploration and the-

oretical foundation SNR-BER relationship, its expansion

to bitrate-BER relations, and the definion of a similarity
metric which is suitable for quality assessment using fin-

gerprints.
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