

A PARTIAL SEARCHING ALGORITHM AND ITS APPLICATION
FOR POLYPHONIC MUSIC TRANSCRIPTION

 Xue Wen, Mark Sandler
 Centre for Digital Music,

Department of Electronic Engineering,
Queen Mary, University of London,

Mile End Road, London, E1 4NS
{xue.wen,mark.sandler}@elec.qmul.ac.uk

ABSTRACT
This paper proposes an algorithm for studying spectral
contents of pitched sounds in real-world recordings. We
assume that the 2nd-order difference, w.r.t. partial index,
of a pitched sound is bounded by some small positive
value, rather than equal to 0 in a perfect harmonic case.
Given a spectrum and a fundamental frequency f0, the
algorithm searches the spectrum for partials that can be
associated with f0 by dynamic programming. In section
3 a background-foreground model is plugged into the
algorithm to make it work with reverberant background,
such as in a piano recording. In section 4 we illustrate an
application of the algorithm in which a multipitch
scoring machine, which involves special processing for
close or shared partials, is coupled with a tree searching
method for polyphonic transcription task. Results are
evaluated on the traditional note level, as well as on a
partial-based sub-note level.

Keywords: sinusoids, spectral harmonic model,
dynamic programming, polyphonic music transcription.

1 INTRODUCTION
Real-world tonal sounds from acoustical instruments
depart more or less from the perfect harmonic model, in
which partial frequencies are multiples of a fundamental
frequency (f0) [1]. Partial frequencies are crucial for
estimating other spectral parameters [2] that can be basic
to higher-level MIR tasks. Often it is desirable to find
out individual partial frequencies rather than assuming
perfect harmonicity. In this paper we propose a method
that finds partials from the signal. Given the power
spectrum and an estimate of f0, it searches for partials
that can be associated with f0 under assumptions weaker
than the perfect harmonic model. It neither requires the
input sound to be noise free, nor asks partials from
different events to be well separated. It’s also robust
with missing or weak partials. However, interfering
partials are given a summary amplitude only. Section 4
gives an example on how we can make use of this
amplitude.

2 THE PARTIAL SEARCHING
ALGORITHM

Partials of most tonal sounds can be viewed as nearly
harmonic. Departure of true partial frequencies from
multiples of f0 is known as inharmonicity. We denote
the frequency of the pth partial as kp(f0), a function of
fundamental f0 and partial index p. In particular, the
fundamental frequency is k1(f0)1. Since inharmonicity is
something highly dependent on individual instruments, a
parametric a priori modeling similar to [3] will be hard
when we don’t have enough knowledge on the
instrument involved. Here we take a posterior approach,
in which partial frequencies are estimated from the
signal, while only weak assumptions are imposed on
how the partials distribute.

Rather than considering the difference between kp(f0)
and pk1(f0), as does [4], we focus on the intervals
between consecutive partials. Define the 1st- and 2nd-
order differences of partial frequencies with respect to p

1),f0()f0(
1),(f0

)f0(
1

1

⎩
⎨
⎧

>−
=

=∆
− pkk

pk
k

pp
p , (1)

and

1),f0()f0(

1 ,0
)f0(

1

2

⎩
⎨
⎧

>∆−∆
=

=∆
− pkk

p
k

pp
p . (2)

In perfect harmonic case, we have ∆kp(f0)=k1(f0) and
therefore ∆2kp(f0)=0 for all p≥1. With real-world signals,
we assume that

ppkp upl ∀⋅<∆<⋅ ,f0)()f0(f0)(2 δδ (3)
where)(plδ <0 and)(puδ >0 take small absolute values.
We also assume that inharmonicity grows larger for
higher partials, so |δl(p)| and |δu(p)| are allowed to
increase with p. What assumption (3) does is hard-
limiting the error of a 1st-order linear prediction of
partial frequencies. It’s trivial to extend (3) to a higher
order by taking into account differences of ∆2kp(f0). We
use 1st-order only.

Partial searching starts from the discrete sound
spectrum x=(xk)k=1,2,…, typically obtained by DFT, and a
given fundamental f0. The sound may have multiple
pitches, either from the same instrument or not.
Constraints (1)~(3) help to prevent well separated
partials from disturbing each other. The output of partial
searching are partial frequencies kp(f0), p=1, 2, …, as

1 f0 is not quantitatively defined in this article, while k1(f0) is its

quantitative model.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
com-mercial advantage and that copies bear this notice and the
full citation on the first page.

© 2005 Queen Mary, University of London
690

well as amplitudes ap(f0), p=1, 2, …. In the case one
single partial being shared by multiple pitches, ap(f0) is a
summary amplitude of that partial. For simplicity we
omit “(f0)” from these notations in what follows.

The searching process is one of optimization. We
denote any candidate partial frequency sequence ψ as
k[ψ]=(kp[ψ])p=1,2,…, subject to constraints (1)~(3). Given
a k[ψ], a reference spectrum h[ψ]=(hk[ψ])k=1,2,… is
constructed as

...3,2,1 ,])ψ[(

])ψ[(]ψ[

=−=

=

∑

∑
kkkwcC

kwcCh

p
pp

p
pkpk

 (4)

where w(k) is the amplitude spectrum of the window
function used for the DFT, and ∑=

p
pcC 21 a

normalizing factor. In practice (cp)p=1,2,… is selected so

that cp≥0 and∑
∞

=1p
pc <∞. The number of partials being

considered can be roughly decided by f0 and the
sampling rate. Notice that while])ψ[(pk kw is discrete,
w(k) takes a continuous domain. h[ψ] approximates the
amplitude spectrum of a signal whose partials fall at k[ψ]
and amplitudes are given as (cp/C)p=1,2,…. We define our
objective function as the inner product of the data
spectrum x and the reference spectrum h[ψ]:

∑∑

∑
=

><=><

k
pkk

p
p

p
p

p

kwxcC

kwxcChx

])ψ[(

])ψ[(,]ψ[,
, (5)

The searching algorithm tries to find an optimal ψ that
maximizes this inner product:

><=]ψ[,maxargψ
ψ

hx) (6)

The term <x, w(kp[ψ])> in (5) sets up a frequency-
domain matched filter to detect the pth partial locally. We
put special focus on local spectral peaks, i.e. maxima of
<x, w(kp[ψ])>. This is done by introducing another
constraint on kp:

set" discrete predefined a from selected isor

 ,)(maxizeslocally either " >< pkp kx,wk
 (7)

The “either” condition requires a partial to fall on a
spectral peak. However, when no peak is located in the
searching interval, typically with missing or masked
partials, we artificially add some candidates so that the
search can continue. A plausible suggestion is to place a
kp candidate at 2kp-1-kp-2, which is its 1st-order predicted
position. Adding more candidates may slightly improve
the result, at the cost of more computation.

Constraint (7) confines candidates for each partial to
a discrete set. In this case the optimization can be
formulated as a route finding problem: here route refers
to a sequence of (index, frequency) pairs {(p, kp)}p=1,2,…,
and each pair contributes a mileage of ><)(, pp kwxc ,
determined solely by kp. A route starts from p=1, and

terminates where p is big enough so that the tail sum
><∑

>

)(, '
'

' p
pp

p kwxc is ignorable. The frequency of the

pth partial kp must be selected from a set determined by
kp-1 and kp-2 through the constraints. Finding the optimal
ψ̂ is equivalent to finding the longest route with these
settings.

Figure 1 gives an illustration on how the constraints
work. Each circle in the graph stands for a spectral
peak, with kpn denoting the nth peak found for the pth
partial. Circles are connected by arrows to form a route.
A light-coloured line pair from a circle gives the
feasible range to find the next partial when the last
partial comes by the arrow in the same line style. E.g.
the solid line pair from k21 encloses the range to search
for a next partial after k12→k21, and the dotted line pair
from k21 encloses the range to search for the next partial
after k11→k21. Of the four peaks found for partial 3, k32
falls in both ranges; and k33 falls in the successor range
of k12→k22 only. This means route k12→k22 may lead to
both k32 and k33, while route k11→k21 may only lead to
k32. As for route k12→k21, although it also reaches k21, it
finds no matched peak for partial 3. However, it is
extended to a temporary lodge at k3A, from which it may
continue with further peaks in higher partials, such as
k41. Route k11→k21 joining k12→k22 at k32 does not imply
that they have become one immediately. However, if a
spectral peak at the next partial, say k42, falls in the
intersection of feasible successor ranges of k21→k32 and
k22→k32, then routes k21→k32→k42 and k22→k32→k42 are
bound as one in future searching for higher partials.

We solve the constrained optimization by dynamic
programming (DP). However, we can not apply DP
directly on (p, kp), as the candidate set for (p+1)th partial
depends on both kp and kp-1, while the standard DP
recursion allows only 1-step dependency to derive the
(p+1)-step optima from p-step optima. To fix this
problem we tie (p-1, kp-1) and (p, kp) together to form an
extended partial (p, kp, ∆kp). We define the optimal
partial route length as

))(,(max),(
'

'
1

><=∆ ∑
<=∆−=−

p
pp

pppp kwxckkS
pkpkpk

. (8)

k12
k11 k21

k22

k31

k32

k33

k34

k42

k41
k3A

Figure 1 Partial searching routes

691

This is interpreted as the maximal length of all routes
that terminate at (p, kp, ∆kp). From another point of view,
an extended partial is a connection between consecutive
partials, corresponding to an arrow in Figure 1. Since the
inward connection at a peak is enough to determine the
outward connection candidates, 1-step dependency is
satisfied and DP is directly applicable with connections.
The complete algorithm is given as follows:

Algorithm 1: harmonic partial finding
A1.1° Set the root node p=0, k0=0, ∆k0=f0, S0(k0, ∆k0)=0.
A1.2° For p=1, 2, …, do A1.3°~1.5° until the stop condition is

met, i.e. p is large enough.
A1.3° For each node (p-1, kp-1, ∆kp-1) in the last iteration,
 A1.3a° calculate the feasible interval of its successor

partial frequency as (kp-1+∆kp-1+δl(p)f0, kp-1 +∆kp-1+
δu(p)f0);

 A1.3b° do a maximum search of ><)(pk kx,w regarding
kp on that interval, call the found maxima kp,1, kp,2, …;

 A1.3c° define the feasible successor set of (p-1, kp-1, ∆kp-1)
as {(p, kp,1, kp,1- kp-1), (p, kp,2, kp,2- kp-1), (p, kp,3, kp,3- kp-

1),… }, or in the case no maximum is found in (3b), as
{(p, kp-1+∆kp-1, ∆kp-1)}.

A1.4° Collect all feasible successors generated in 3° together
and re-label them as (p, kp,l, ∆kp,l), l=1, 2, 3,…; these are
node candidates for partial p.

A1.5° For each new feasible node (p, kp,l, ∆kp,l), calculate the
optimal partial route length

><+∆∆−=∆ −−
∆ −

)(,) ,(max),(,,*1,,1,,
,*1

lppplplppklplpp kwxckkkSkkS
p

 where the maximum is taken over all its predecessors with
the same kp-1 but different ∆kp-1’s. Denote the ∆kp-1 which
maximizes (8) as ∆-kp(p, kp,l, ∆kp,l).

A1.6° For the final iteration p=P, find l̂ as the l that
maximizes SP(kP,l, ∆kP,l); set kp= lP

k ˆ,
, ∆kp=∆ lP

k ˆ,
,

∆-kp= ∆-kp(p,
lP

k ˆ,
, ∆

lP
k ˆ,

).

A1.7° For p=P-1, P-2, …, 1, calculate kp= kp+1-∆kp, ∆kp=
∆-kp+1, ∆-kp= ∆-kp(p, kp , ∆kp).■

The algorithm searches for k1(f0) in a vicinity of the
given f0, which copes with accuracy problems of the
given fundamental rather than with inharmonicity. The
choice of δl(1) and δu(1) therefore differs from that for
higher partials. One can force k1(f0) at f0 by setting
δl(1)= δu(1)=0, which is equivalent to starting searching
at p=2 from root (1, f0, f0).

The amplitude of the pth partial ap can be estimated as
2)(, wkwxa pp ><≅ (9)

where ∑
∈

=
Zk

kww 22 is a positive constant. Compare (9)

with (8), it’s apparent that

2
111),(),(

wc

kkSkkS
a

p

pppppp
p

−−− ∆−∆
≅ . (10)

Equation (10) shows how partial amplitude estimation
can be integrated into the partial searching algorithm.

For a stationary sound source with constant partial
frequencies, one may wish to use spectra calculated from

multiple frames for better estimation. Let the spectra be
x1, x2, …, we rewrite the objective function as

><=>< ∑∑∑])ψ[(,]ψ[, p
n

nn
p

p
n

nn kwxbcChxb (11)

where bn, n=1, 2, …, are weights assigned to the frames.
Equation (11) implies that we use ∑

n
nn xb instead of x

for partial searching.
Input data x appears in the algorithm only in the form

of inner product <x, wk(kp)>. This means if <x, wk(kp)> is
available as input, we don’t have to know x. We’ll show
how we can make use of this property later.

3 REVERBERANT BACKGROUND: A
PIANO EXAMPLE

The partial searching algorithm is tested on a piano
recording of Bach’s Prelude in C, BWV 846a, in which
the instrument is supposed to be well-tuned on a perfect
well-tempered scale with A4 at 440Hz. The recording is
of high quality, yet extra sounds like pedalling and
singing are heard. The piece is partially monophonic in
that only one note is played at a time (except the last
chord). However, a note may last a long period and
overlap the coming-up ones, which creates polyphony.

Like many other polyphonic analyzers, our system
prefers a sparser input with fewer concurrent sounds. In
common sense, a mixture of two sounds is no sparser
than any of the two. For a piano recording, we try to
reduce polyphony by breaking the sound into a
foreground part and a background part in a note-by-note
manner. The most recent note is modeled as the
foreground, and sustaining previous notes are modeled
as the background. Given a note onset where a new note
(i.e. the foreground) starts, we denote the spectrum
before and after the onset as x- and x+ respectively. x- is
interpreted as the summary spectrum of all previous
notes immediately before the new note, while x+ is a
combination of the new note, whose spectrum we denote
as y, with those notes carried over from x-, whose
spectrum after the onset we denote as x~ . We make three
further assumptions:

1) for any bin index k,
0≤ kx~ ≤x-k, yk≥0 (12)

2) for any bin index k,
222 ~
kkk yxx +=+ (13)

3) y is made up of partial spectra, each in the form of
apwk(kp):

0 ,)(>= ∑ p
p

pkpk akway (14)

By (12) we assume that the power of a sustaining note
does not increase. By (13) we assume that energy is
preserved in every bin. (14) is a common assumption in
sinusoidal models. Apparently these are approximations
only, and their solution (ap, kp)p=1,2,… can be non-existing
or non-unique. We get around the existence problem by
allowing a spectral error r in assumption 2. We combine
(12)~(14) and rewrite with the error term:

692

0,10

 ,))((222

><<

++= ∑−+

pk

k
p

pkpkkk

a

rkwaxx

λ

λ
 (15)

We minimize the residue r=(rk)k=1,2,… by its Euclidian
norm. If r=0, it indicates non-unique solutions. One way
to deal with the uniqueness problem is to use an
additional objective function. We choose to maximize
λ=(λk) k=1,2,… by its Euclidian norm on the constraint r=0,
which implies maximal removal of the background.
With fixed (kp)p=1,2,…, by minimizing r (and maximizing
λ when r=0) we get a=(ap)p=1,2,…. We write

22)(

)()(,

wakwa

kwykwy

p
k p

pkp

k
pkkp

≅=

>=<

∑∑

∑
 (16)

where inter-partial spectral leakage has been assumed
ignorable. Equation (16) explicitly evaluates <y, wk(kp)>,
which enables partial searching on the foreground signal
y using Algorithm 1.

In our test we measure partial frequencies of every
note, using multiple frames starting from the onset. The
ideal f0, e.g. A4=440Hz, is used to start partial
searching. The means µp(f0) and standard deviations
σp(f0) of partial frequencies are calculated for notes that
appear at least 9 times. We have no ground truth on the
exact partial frequencies. However, by assuming partial
frequencies being constant for a given key, we can study
how reliable the searching is using σp(f0). In general the
envelope of σp(f0) increases slowly with p, until after
some point the increase becomes dramatic. Figure 2
depicts σp(f0) against kp for C4, #F4 and A4, both axes
are measured in DFT bins (1bin=10.77Hz). While minor
σp(f0) may be credited to local noises, large ones
generally imply searching failure.

We set 1 bin as the threshold for judging whether a
partial is reliably measured, and define p’(f0) as the
maximal P that satisfies σp(f0)<1, ∀p≤P. Results are
given in Table 1. Frequencies are given in bins. The first
10 partials are successfully captured most of the time.
More than 99% of total energy is enclosed in the first
p’(f0) partials.

Table 1 Evaluating partial frequency measurement
Pitch p’(f0) kp’(f0) Pitch p’(f0) kp’(f0)
G2 22 204.01 E4 10 313.68
D3 24 340.16 F4 8 264.29
F3 16 265.72 #F4 12 430.22
G3 15 280.69 G4 12 457.17
A3 17 362.35 A4 10 425.48
B3 12 281.42 B4 5 232.07
C4 16 405.62 C5 3 147.05
D4 17 490.79 D5 8 454.57
E4 10 313.68

It’s also interesting to look at how partial frequencies
depart from perfect harmonic model. We collect ∆2kp
and the difference between kp and pk1 in Table 2. Results
are given for the first 12 partials of keys A3, C4 and G4.
All frequencies are given in bins. For all three keys ∆2kp

are always positive and increasing in the long trend,
which supports the positive adaptation of δu(p) with p.
kp-pk1 gives a hint on how much will be lost when using
a perfect harmonic model. With most popular window
functions (Hann, Hamming, Kaiser, etc), a frequency
error above 1 bin usually implies a big error in amplitude
estimation, and an error above 2 bins usually means that
the partial is lost.

Table 2 Evaluating inharmonicity
A3 C4 G4 p ∆2kp kp-pk1 ∆2kp kp-pk1 ∆2kp kp-pk1

2 0.059 0.06 0.033 0.03 0.152 0.15
3 0.019 0.14 0.030 0.10 0.005 0.31
4 0.037 0.25 0.079 0.24 0.264 0.73
5 0.049 0.42 0.068 0.45 0.208 1.36
6 0.087 0.67 0.082 0.74 0.407 2.39
7 0.138 1.06 0.247 1.28 0.409 3.84
8 0.122 1.57 0.087 1.91 0.380 5.66
9 0.069 2.16 0.188 2.72 0.584 8.07

10 0.110 2.84 0.302 3.84 0.723 11.2
11 0.107 3.63 0.110 5.06 0.535 14.9
12 0.342 4.77 0.246 6.53 0.560 19.1

4 APPLICATION FOR POLYPHONIC
MUSIC TRANSCRIPTION

By transcription we mainly mean pitch or multipitch
identification. The partial searching algorithm associates
spectral peaks, either perfectly or nearly harmonic, to a
hypothesis f0. The results on frequencies and amplitudes
compose an informative point to start pitch estimation.
In [5] we have shown how a partially monophonic piece
can be effectively transcribed using the partial searching
algorithm only. However, as the algorithm is designed
for single pitch, it’s not directly applicable for
transcribing polyphonic music. Instead, we start from its
outputs for polyphonic transcription .

Before we proceed with multipitch estimation, it’s
helpful to remove those unlikely pitches from further
consideration. To do this, we require at least one of the
first three partials to appear as a spectral peak with
amplitude above a threshold th. A pitch candidate is

Figure 2 Standard deviation of partial frequencies

693

removed if no peaks are located in step A1.3b° for its
first three partials, or if the amplitudes of located peaks
all fall below th. This trimming can be integrated into
the partial searching Algorithm 1.

We build a scoring machine in the form S(ψ, x+, x-),
where ψ is a hypothesis pitch set, x+ and x- are spectra
before and after the onset. The larger S(ψ, x+, x-), the
more likely ψ being the solution. The score is calculated
as the sum of individual contributions of all partials of ψ.
The pth partial of the nth pitch with amplitude ap
contributes cpα(ap) to the score, where cp>0, p=1,2,…,
are partial weights, and α(•) is a nondecreasing function.
We let cp decrease slowly with small p’s for which the
partial searching results are more valid, and approach
zero when p is large. α(•) is designed as

α(ap)=
⎪⎩

⎪
⎨

⎧
>

−

otherwise

kFloora
A

kFloora
pp

pp

,0

)(),
)(

tanh((17)

for controlling the magnitude of individual
contributions, where Floor(k) is a floor level at spectral
channel k, and A is a relatively large constant. A→∞
implies a linear α(•).

However, if a partial is shared by multiple pitches, or
if certain partials of multiple pitches are very close, the
frequencies tend to be less valid and the amplitudes are
summary amplitudes of all partials involved. When
calculating the score, we make sure that a shared partial
is summed only once, and very close partials go through
a masking process before subjected to α(•), as follows.

Suppose we have n partials with close frequencies k1,
k2, …, kn, their summary amplitudes given by a1, a2, …,
an. Let one partial located at kl have a true amplitude bl,
i.e. it contribute blwk(kl) to the spectrum x. Accordingly,
it contributes an amount of 2)(),(wkwkwb mll >< to
the summary amplitude am. We can write

)()(),0(

)(),(

2

2

lmwl
lm

l

mll

kkrb
w

kkwwb

w
kwkwb

−=
>−<

≅

><

 (18)

where rw(k) is determined solely by the window function
w. The summary amplitude am is modeled as the sum of
the contributions of all n partials, i.e.

∑ −≅
l

lmwlm kkrba)(, m=1,2,…,n (19)

We derive a masking process from (19), in which the
largest partial, say kl, is chosen as the masker; then for
any m≠l, am is decreased by alrw(km-kl)-amrw

2(km-kl), or
set to 0 if it’s smaller than that amount. This masking
may go on with the 2nd largest partial, etc. For our task,
we mask with the largest partial only.

Multipitch searching works in an iterative way: given
the mN best N-pitch solutions

N,,2,1
N}ψ{ mmm L= , it searches

for mN+1 best (N+1)-pitch candidates by adding a new
pitch to an N-pitch one. We start by testing all single
pitches, find the best m1; then test all pitch pairs that
contain one of the m1 best pitches, find the best m2; then

test all 3-pitch sets that contain one of the m2 best pitch
pairs, etc. The complete process is given as follows.

Algorithm 2: multipitch searching
A2.0° Given x+, x-, (mN) N=1,2,….
A2.1° Derive trimmed pitch candidate set P using Algorithm

1, recording all frequencies and amplitudes; set
Ψ1={{k1m}| m=1,2,…,m1}, where k11, k12, … are the best
m1 pitches;

A2.2° For N=1, 2, …, do A2.3°~2.5° until ΨN= Ø or N meets
a preset upper bound;

A2.3° Set ΨN+1= Ø;
A2.4° For m=1, 2, …, mN,
 A2.4a° for all k∈P \ Nψm , do A2.4b°~2.4f°;

 A2.4b° if S(Nψm +{k}) has been calculated once, skip
A2.4c°~2.4f°;

 A2.4c° calculate score S(Nψm +{k}, x+, x-);

 A2.4d° if S(Nψm +{k}, x+, x-) < S(Nψm , x+, x-), skip
A2.4e°~2.4f°;

 A2.4e° if the size of ΨN+1 is smaller than mN+1, insert
Nψm +{k} into ΨN+1, skip A2.4f°;

 A2.4f° denote the element in ΨN+1 with the smallest score
as 1N

~ψ +
m ; if S(Nψm +{k}, x+, x-) > S(1N

~ψ +
m , x+, x-), then

replace 1N
~ψ +
m from ΨN+1 with Nψm +{k};

A2.5° If |ΨN+1|<mN+1, set mN+1=|ΨN+1|;
A2.6° Output results. ■

A2.4b° is a step to stop multiple calculations on the
same multipitch. Algorithm 2 can be summarized as
growing a tree: each branch from a node adds a pitch,
meanwhile brings an increase in the score. A limit mN is
imposed on the number of nodes on level N so that only
those predominant branches grow on.

Algorithm 2 outputs a set sequence (ΨN)N=1,2,…,
where ΨN contains mN best N-pitch candidates. If the
number of concurrent notes is known as n, we can select
the best element in Ψn as the result. Finding this
number, however, is not trivial. A naïve way is to
compare the scores. In favour of less notes, we start
from N=1 and allow N to increase as long as the best
score increases by more than some preset level. We also
look at the total amplitude of all partials, which
measures how much of the amplitude spectrum has been
resolved.

We run our test on a recording of Bach’s Fugue in C,
BWV 846b, of high quality with the real-world noises
like pedalling and singing. The piece is a 4-part fugue.
A maximum of 4 keys are played at a time. Altogether
736 notes are played in 406 note groups (by note group
we mean notes played at the same time), forming 20 4-
pitch chords, 79 3-pitch chords, 112 2-pitch chords, as
well as 195 single notes. We assume that the note onsets
are known. For onset detection and verification using
the partial searching Algorithm 1, one may refer to [5,
6]. At each onset, we calculate the background and
foreground spectra x- and x+. 72 keys from A1 to #G7
are considered as note candidates.

694

Evaluation is done both note-wise and note-group-
wise. A note is correctly identified (abbr. CI) if the
detected pitch coincide with the labelled one. Note-wise
errors are classified into harmonic and non-harmonic
ones. Harmonic errors include harmonic replacement
(HR) in which a pitch is replaced by another harmonic1
pitch, harmonic insertion (HI) in which a spurious pitch,
harmonic to a CI pitch, is found, and harmonic missing
(HM) in which a labelled pitch, harmonic to a CI pitch,
is not found. Non-harmonic errors are insertion (I) and
missing (M) errors excluded from harmonic ones. Note-
wise errors of the same type within a note group are
counted as one note-group-wise error of that type. A
note group is CI if it has no errors.

Before presenting the more conventional note-level
evaluation, we do a sub-note level evaluation of the
error types, in which we count percentages of missing
and inserted partials, rather than those of notes. Results
are given in Table3 separately for the 5 error types and
for groups of 1, 2, 3 and 4 (column N) notes. For
example, 11.1/27.8 in the top left says that with all HR
type errors in single-pitch groups, 11.1% of all partials
of the replaced notes are not found in the identified
notes, and 27.8% partials of the replacing notes are not
found in the labelled notes. For all HI errors, only
2.01% partials of inserted notes are truly spurious, while
for non-harmonic insertion the ratio is 83.8%. For note
missing types, corresponding ratios are 25.4% compared
to 62.5%. These support our classification of error
types: on partial level, harmonic errors do less harm
than non-harmonic ones.

Table 3 Partial-level evaluation for notes

Table 4a lists the note-group-wise results. Numbers
of errors of each type are given separately for groups of
1, 2, 3 or 4 notes. Since a group may have multiple
errors, the total number of CI and errors may exceed the
number of note groups.

Table 4b lists the note-wise results. Numbers of
errors of each type are given separately in Table 4b for
note groups with 1, 2, 3 or 4 pitches. In this table the
equality total=CI+HR+HM+M holds.

Table 4a Note-level evaluation for note groups
N total CI HR HI HM I M
1 195 108 12 44 0 49 0
2 112 45 32 29 4 21 5
3 79 15 33 20 13 13 12
4 20 1 13 2 8 2 3

1~4 406 169 90 95 25 85 20

1 We call two pitches harmonic if one is a rough multiple of the other.
This includes both harmonic and subharmonic cases in the strict sense.

Table 4b Note-level evaluation for notes
N total CI HR HI HM I M
1 195 183 12 64 0 64 0
2 224 182 33 37 4 22 5
3 237 173 39 20 13 14 12
4 80 50 17 2 9 2 4

1~4 736 588 101 123 26 102 21

A note group identification rate of 42% is obtained
at 22% HR, 24% HI, 6.2% HM and 21% non-harmonic
insertion errors. A note identification rate of 80% is
obtained at 14% HR, 17% HI, 3.5% HM and 14% non-
harmonic insertion errors. In both cases insertions are
several times more than missing errors, implying the
result may be improved a bit by adjusting the threshold.

5 CONCLUSION
In this paper we propose a partial searching algorithm
based on 1st-order frequency prediction using a revised
dynamic programming method. Results show that the
algorithm is able to correctly locate partials of a piano
recording when perfect harmonic model would probably
fail. We also give a tree-searching method for multipitch
identification, using the partial searching algorithm at
front end. We evaluate the transcriber with a piano
recording both on note level and on sub-note level. In
the latter case we propose to measure how harmful an
error is in polyphonic transcription by counting partials.
Results support our classification of transcription errors
into harmonic and non-harmonic ones.

6 ACKNOWLEDGMENTS
This work was supported by EU-FP6-IST-507142
project SIMAC (acronym for Semantic Interaction with
Music Audio Contents).

REFERENCES
[1] White H E, White D H. Physics and music: the

science of musical sound. Saunders Coll. Pub.
Philadelphia. 1980.

[2] F Keiler, S Marchand. Survey on extraction of
sinusoids in stationary sounds. 5th Int. Conference on
Digital Audio Effects (DAFx). Germany. 2002.

[3] A Klapuri. Wide-band pitch estimation for natural
sound sources with inharmonicities. AES 106th
Convention. Munich. 1999.

[4] S Godsill, M Davy. Bayesian harmonic models for
musical pitch estimation and analysis. ICASSP.
2002.

[5] Wen X, Sandler M. Transcribing piano recordings
using signal novelty. AES 118th Convention.
Barcelona. 2005.

[6] Wen X. Acoustical onset detection using phase
information. 18th Int. Cong. Acoustics. Kyoto. 2004.

N HR(I/M, %) HI(%) HM(%) I(%) M(%)
1 11.1 / 27.8 1.39 - 88.0 -
2 0 / 37.7 2.03 50 80.4 70
3 1.99 / 31.6 4.17 15.4 72.0 65.8
4 4.31 / 25.4 0 28.9 70.8 43.3

1~4 2.81 / 32.1 2.01 25.4 83.8 62.5

695

