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ABSTRACT

We present a system for musical genre classification based
on audio features extracted from signals which correspond
to distinct musical instrument sources. For the separation
of the musical sources, we propose an innovative tech-
nique in which the convolutive sparse coding algorithm is
applied to several portions of the audio signal. The system
is evaluated and its performance is assessed.

Keywords: Musical Genre Classification, Source Sepa-
ration, Convolutive Sparse Coding.

1 INTRODUCTION AND WORK
OVERVIEW

Recent advances in digital storage technology and the
tremendous increase in the availability of digital music
files have led to the creation of large music collections
for use by broad classes of computer users. In turn, this
fact gives rise to a need for systems that have the abil-
ity to manage and organize efficiently large collections of
stored music files. Many currently available music search
engines and peer-to-peer systems (e.g. Kazaa, emule, Tor-
rent) rely on textual meta-information such as file names
and ID3 tags as the retrieval mechanism. This textual de-
scription of audio information is subjective and does not
make use of the musical content and the relevant meta-
data have to be entered and updated manually, which im-
plies significant effort in both creating and maintaining the
music database. Therefore, it is expected that extracting
the information from the actual music data through an au-
tomated process could overcome some of these problems.

There have been many works on audio content analy-
sis which use various features and methods (Lampropou-
los et al., 2004c; Dowling and Harwood, 1996; Aucoutier
and Pachet, 2003; Tzanetakis and Cook, 2002, 2000),
most of which focus on automatic musical genre classifi-
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cation. These methods provide techniques to organize dig-
ital music into categorical labels created by human experts
using objective features of the audio signal that relate to
instrumentation, timbral texture, rhythmic and pitch con-
tent (Aucoutier and Pachet, 2003; Tzanetakis and Cook,
2000). These techniques rely on pattern recognition algo-
rithms and offer possibilities for content-based indexing
and retrieval. However, all these works use the complex
sound structure of the audio signal in a music file to ex-
tract the feature vector.

In this paper, we propose a new approach for musical
genre classification based on the features extracted from
signals that correspond to musical instrument sources.
Contrary to previous works, our approach uses first a
sound source separation method to decompose the audio
signal into a number of component signals, each of which
corresponds to a different musical instrument source, (see
Figure 1). In this way timbral, rhythmic and pitch fea-
tures are extracted from separated instrument sources and
used to classify a music clip, detect its various musical
instruments sources and classify them into a musical dic-
tionary of instrument sources or instrument teams. This
procedure attempts to mimic a human listener who is able
to determine the genre of a music signal and, at the same
time, identify a number of different musical instruments
in a complex sound structure.

The problem of separating the component signals that
correspond to the musical instruments that generated an
audio signal is ill-defined as there is no prior knowl-
edge about the instrumental sources. Many techniques
have been successfully used to solve the general blind
source separation problem in several application areas;
among these, the Independent Component Analysis (ICA)
method (Plumbley et al., 2002; Martin, 1999) appears to
be one of the most promising. ICA assumes that the indi-
vidual source components in an unknown mixture have
the property of mutual statistical independence. This
property is exploited in order to algorithmically identify
the latent sources. Moreover, ICA-based methods require
certain limiting assumptions, such as the assumption that
the number of observed mixture signals be at least as high
as the number of source signals and that the mixing matrix
be full rank. However, a method has been proposed which
is based on ICA but relaxes the constraint on the number
of observed mixture signals. This is called the Indepen-
dent Subspace Analysis (ISA) method and can separate
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Figure 1: Source Separation: 2 component signals

individual sources from a single-channel mixture by using
sound spectra (Casey and Westner, 2000). Signal inde-
pendence is the main assumption of both the ICA and ISA
methods. In musical signals, however, there exist depen-
dencies in both the time and frequency domains.To over-
come these limitations, we use in our system a recently
proposed data-adaptive algorithm that is similar to ICA
and called Convolutive Sparse Coding (CSC) (Virtanen,
2004).

In our first approach (Lampropoulos et al., 2005a), we
applied the CSC algorithm in the entire input signal that
corresponds to a music piece assuming that the same mu-
sical instruments were active throughout the entire music
piece duration. This assumption, however, is not realistic,
as it is common for different instruments to be used to gen-
erate different parts of a music piece. For example, only
two instruments may be active in the introduction of a mu-
sic piece, a third instrument may be added in the middle
of the piece and so on. Thus, in Section 2.1, we propose
a new approach for music source separation, in which we
apply the CSC algorithm to three parts of a music piece.

More specifically, the paper is organized as follows:
An overall architecture of our system is presented in Sec-
tion 2, with Section 2.1 describing the source separation
method in detail and Section 2.2 describing the extraction
of audio content-based features of music pieces. Classi-
fication methods and results are given in Section 3, while
conclusions and suggestions for future work are given in
Section 4.

2 SYSTEM OVERVIEW

The architecture of our system consists of three main mod-
ules, as in Figure 1. The first module realizes the separa-
tion of the component signals in the input signal, while
the second module extracts features from each signal pro-
duced during the source separation stage. Finally, the last
module is a supervised classifier of genre and musical in-
strument. Each music piece can be stored in any audio file
format, such as .mp3, .au, or .wav., which requires the ap-
plication of a format normalization process before feature
extraction. For this, we decode each music file into raw
Pulse Code Modulation (PCM), using a LAME decoder
(Lame) and convert it to the .wav format with resolution
of 16 bit samples at a sampling rate of 22.050 Hz.

Figure 2: Parts of the Signal

2.1 Improved Source Separation Technique

For source separation, we make the assumption that por-
tions of the signal are sufficient for reliable application of
the CSC algorithm. The first step of the source separation
technique is to identify the music piece portions. Specifi-
cally, we take three parts, one at the beginning, one at the
middle and one at the end of the music signal, as shown in
Figure 2. The length of each part is25% of the length of
the entire signal. We apply the CSC algorithm to the three
signal parts in parallel. We choose the method of convo-
lutive sparse coding because it solves, at least partially,
the assumptions of spectra that remain fixed over time and
the model fitting criterion of the reconstruction error, as-
sumptions which are not valid for audio signals. The basic
signal model in general sparse coding is that each obser-
vation vectorxi is a linear mixture of source vectorssj

:

xi =
J∑

j=1

ai,jsj , i = 1, ..., I, (1)

whereai,j is the weight ofjth source in theith observa-
tion signal.

Both the source vectors and the weights are assumed
unknown. The sources are obtained by multiplying the
observation matrix by the estimate of anunmixingma-
trix. The main assumption in sparse coding techniques is
that the sources are non-active most of the time, which
means that the mixing matrix has to be sparse. The esti-
mation can be done using a cost function that minimizes
the reconstruction error and maximizes the sparseness of
the mixing matrix. More specifically, this method is called
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convolutivesparse coding because the source model is for-
mulated as the convolution of a source spectrogram and an
onset vector. The suitability of this model over-covers the
case of respective transient sources.

The commonly used model fitting criterion that con-
sists of the sum of squared elements of the reconstruction
error emphasizes music signal aspects that differ from the
human sound perception. In order to obtain higher percep-
tual quality of separated sources, the CSC algorithm uses
compression, as explained in the following Section 2.1.1.

2.1.1 Loudness Criterion :

The human auditory system allows humans to perceive
very low-amplitude sounds. The large dynamic range of
the human auditory system is mainly caused by the non-
linear response of the auditory cells, which can be mod-
eled as a separate compression of the input signal at each
auditory channel (Virtanen, 2004). In our system, the
compression is modeled by calculating a weight for each
frequency bin in each frame. The weights are selected
so that the sum of squared magnitudes be equal to the
estimated loudness, since the separation algorithm uses
the squared error criterion as a fitting criterion. This way
”quantitative significance” corresponds to ”perceptual sig-
nificance.”

Specifically, in our system, 24 separate bands are
spaced uniformly on Bark scale and denoted by disjoint
setsFb, b = 1...24. The fixed response of the outer and
middle ear is taken into account by multiplying each bin
of spectrum by the corresponding response. In the CSC al-
gorithm, the termloudness indexis used for the loudness
estimate in a frame within a critical band. The loudness
index in framet in critical bandb is denoted byLb,t and
given as

Lb,t = [
∑

fεFb

(hbxf,t)2 + ε2
b ]

ν − ε2ν
b , (2)

wherehb is the fixed response of the outer and middle ear
within bandb, εb is a fixed scalar with value 0.23 and is
the (fixed) threshold of hearing on bandb. In practice,
εb is not known, but it can be estimated from the input
signal, e.g. by calculating the average level of the signal,
and scaling down 30 dB. This procedure has resulted into
the valueεb = 0.23.

2.1.2 The iterative algorithm :

Each part of the input signal is represented with a mag-
nitude spectrogram, which is calculated as follows: first,
the time domain input signal is divided into frames and
windowed with a fixed 40 ms Hamming window with
50% overlap between frames. Next, each frame is trans-
formed into the frequency domain by computing its dis-
crete Fourier transform (DFT) of length equal to the win-
dow size. Only positive frequencies are retained and
phases are discarded by keeping only the magnitude of
the DFT spectra. This results in a magnitude spectrogram
xf,t, wheref is a discrete frequency index andt is a frame
index. A two-dimensional magnitude spectrogram is used
to characterize one event of a source at discrete frequency
f , t frames as the onset varies between0 andD.

The magnitudesxf,t and weightswf,t are calculated.
The number of sourcesN is predefined. N should be
equal to the number of clearly distinguishable instru-
ments. If the spectrum of one source varies significantly,
for example because of accentuation, one may have to use
more than one component per source. The model consid-
ers the different fundamental frequencies of each instru-
ment as separate sources. Initializea1...an with the abso-
lute values of Gaussian noise.
Iteration:

1. Updatesf,t using the multiplicative step

s{p+1} = s{p}. ∗ (
AT WT

f Wfxf

)

./
(
AT WT

f WfAs{p}
)

(3)

where thes{p+1} is the updateds{p} for pth iteration
given theA, Wf .

2. Calculate∇an = ∂ctot(λ)
∂an

.

3. Updatean ← an − µκ∇an. Set the negativean ele-
ments to zero.µκ is the step size, which is adaptively
set.

4. Evaluate the cost function.

5. Repeat Steps 1-4 until the value of the cost function
remains unchanged.

In the synthesis mode, the convolutions are evalu-
ated to get frame-wide magnitudes of each source. To
get the complex spectrum, phases are obtained from the
phase spectrogram of the original mixture signal. The
time-domain signal is obtained by inverse discrete Fourier
transform and overlap-add. This procedure has been
found to produce best quality. The use of the original
phases allows the synthesis without abrupt changes in
phase.

3 FEATURE EXTRACTION

We transform an audio signal at a certain level of infor-
mation granularity. Information granules refer to a collec-
tion of data that contain only essential information. Such
granulation allows more efficient processing for extract-
ing features and computing numerical representations that
characterize a music signal. As a result, the large amount
of detailed information in a signal is reduced to a collec-
tion of features. Each feature captures some aspects of
signal and gives the essential information of that. In our
system, we used a 30-dimensional objective feature vector
which was originally proposed by Tzanetakis (Tzanetakis
and Cook, 2002, 2000) and used in other works (Tzane-
takis, 2002; Lampropoulos et al., 2004c; Lampropoulos
and Tsihrintzis, 2004a,b; Lampropoulos et al., 2005a,b;
Foote, 1999; M. Welsh et al., 1999). For the extraction
of the feature vector, we used MARSYAS, 0.1 a public
software framework for computer audition applications
(Tzanetakis and Cook, 2000). The feature vector con-
sists of three different types of features rhythm related
(Beat), timbral texture (musical surface: STFT, MFCCs)
and pitch content related.
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Figure 3: Source Separation: 3 component signals

3.1 Rhythmic Features

Rhythmic features characterize the variation of music sig-
nals over time and contain such information as regular-
ity of the tempo. The feature set for representing rhythm
is based on detecting the most silent periodicities of the
signal. Rhythm is extracted from beat histograms, that
is curves describing the beat strength as a function of
tempo values and the complexity of the beat in the mu-
sic. The regularity of the rhythm, the relation of the main
beat to subbeats and the relative strength of subbeats to
the main beat, are used as some of the features in musical
genre recognition systems. The Discrete Wavelet Trans-
form (DWT) is used to divide the signal into octave bands
and, for each band, full-wave rectification, low pass fill-
tering, downsampling and mean removal are performed
in order to extract an envelope. The envelopes of each
band are summed up and the autocorrelation is calculated
to capture the periodicities in the signal’s envelope. The
dominant peaks in the autocorrelation function are accu-
mulated over the whole audio signal into a beat histogram.

3.2 Timbral Textrure

In short time audio analysis, the signal is broken into
small, possibly overlapping temporal segments each seg-
ment is processed separately. These segments are called
”analysis windows” and need to be short enough for the
frequency characteristics of the magnitude spectrum to be
relatively stable. The term ”texture window” describes the
longest window that is necessary to identify music texture.
The timbral texture features are based on the Short Time
Fourier Transform and calculated for every analysis win-
dows. Means and standard deviations are calculated over
the texture window.

3.3 Pitch Features

The pitch features describe melody and harmony infor-
mation about a music signal. A pitch detection algorithm

decomposes the signal into two frequency bands and am-
plitude envelops are extracted for each frequency band.
Applying half-way rectification and low-pass filtering per-
forms the envelope extraction. The envelopes are summed
and an enhanced autocorrelation function is computed so
that the effect of integer multiples of the peak of frequen-
cies to multiple pitch detection be reduced. The dominant
peaks of the autocorrelation function are accumulated into
pitch histograms and the pitch content features extracted
from the pitch histograms. The pitch content features typ-
ically include: the amplitudes and periods of maximum
peaks in the histogram, pitch intervals between the two
most prominent peaks and the overall sums of the his-
tograms.

4 CLASSIFICATION

In order to evaluate our source separation-based music
genre classification technique, we have tried different
classifiers contained in the machine learning tool called
WEKA (WEKA), which we have connected to our sys-
tem.

In this work, we utilize genre classifiers based on mul-
tilayer perceptrons. The input to the artificial neural net-
works is the feature vector corresponding to the compo-
nent signals produced by source separation. Specifically,
the source separation process produced two or three com-
ponent signals (see Figures 1 and 3, respectively) which
correspond to instrument teams such as strings (bouzouki,
guitar,etc), winds (greek clarinet, flute, bagpipes, etc)
and percussion instruments (drums, tabor, etc). We con-
structed two different multilayer perceptrons, in which the
artificial neural networks consisted of four (4) and ten (10)
hidden layers of neurons, respectively. The number of
neurons in the output layer is determined by the number of
audio classes we want to classify into (four in this work:
rebetico, dimotiko, laiko, entechno). The networks were
trained with the back-propagation algorithm and their out-
put estimates the degree of membership of the input fea-
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ture vector in each of the four audio classes. Thus, the
value at each output necessarily remains between 0 and 1.
Classification results were calculated using 10-fold cross-
validation evaluation, where the dataset to be evaluated
was randomly partitioned so that 90% be used for train-
ing and 10% be used for testing. This process was iter-
ated with different random partitions and the results were
averaged. This ensured that the calculated accuracy was
not biased because of the particular partitioning of train-
ing and testing. The specific data set we used consisted of
1049 music pieces from 4 genres of greek songs, namely
Rebetico (396 pieces), Dimotiko (106 pieces), Laiko (414
pieces), and Entechno (133 pieces).

Table 1: Correctly Classified Instances without/with
Source Separation

Classifier w/out SS with SS
Nearest-Neighbour Classifier67.6 68.2
MLP 4 hidden layers 73.2 74.2
MLP 10 hidden layers 73.9 75.1

Table 2: Correctly Classified Instances with CSC and with
improved CSC

Classifier CSC imp CSC
Nearest-Neighbour Classifier68.2 69.2
MLP 4 hidden layers 74.2 75.8
MLP 10 hidden layers 75.1 75.9

As seen in Table 1 , the classification results after im-
plementation of the source separation technique presented
an improvement of1% - 2%. This was due to the fact
that the source separation technique revealed more infor-
mation about timbral texture, rhythm and pitch (harmony)
content, not only for the signal as a whole, but for a num-
ber of the separated instrument team sources. Moreover,
as seen in Table 2, after implementation of the improved
source separation technique we had a0.5% - 1% improve-
ment over a previous work of ours (Lampropoulos et al.,
2005a), in which the CSC algorithm was applied to the
entire signal. Thus, the total improvement in our present
approach is about2% - 2.5% over previous genre classi-
fication methods. Finally, the present CSC approach not
only results in better genre classification, but is faster than
the existing CSC algorithms, as it is applied in parallel to
small portions of duration of 30 - 50 sec and not on an
entire audio signal of duration of 3 - 3.5 min.

Table 3: Confusion Matrix: MLP 4 hidden layers w/out
SS73.2%

Rebetico Dimotiko Laiko Entechno
R 304 9 73 10
D 20 67 18 1
L 88 6 307 13
E 17 2 24 90

Table 4: Confusion Matrix: MLP 4 hidden layers with SS
CSC74.2%

Rebetico Dimotiko Laiko Entechno
R 325 8 57 6
D 32 62 10 2
L 101 9 296 8
E 25 0 13 95

Table 5: Confusion Matrix: MLP 4 hidden layers with SS
improved CSC75.8%

Rebetico Dimotiko Laiko Entechno
R 299 8 80 9
D 22 67 15 2
L 67 7 330 10
E 19 0 15 99

To analyze further a musical genre classifier (e.g.,
the multilayer perceptron with 4 hidden layers), we also
present the correspondingconfusion matrices, as shown in
Tables 3 (without Source Separation, classification accu-
racy of73.2%), 4 (with Source Separation based on CSC,
classification accuracy of74.2%) and 5 (with Source Sep-
aration based on improved CSC, classification accuracy
of 75.8%). In a confusion matrix, the columns correspond
to theactualgenre, while the rows correspond to thepre-
dictedgenre. For example in Table 3, the cell in row 2 of
column 4 has value 1, which means that 1 song (in a to-
tal of 106 songs) from the ”dimotiko” class was wrongly
predicted as ”entechno”. Similarly, 20 and 18 songs from
the ”dimotiko” class were predicted to be from the ”re-
betiko” and ”laiko” classes, respectively. Therefore, the
percentage of correct classification of songs from the ”di-
motiko” class is computed to equal 67*100/106=63,2 %
for this classifier. The correct classification percentages
are, therefore, derived from the entries in the diagonal el-
ements of a confusion matrix and the corresponding actual
number of songs in the library.

5 CONCLUSIONS - FUTURE WORK

It has been observed that audio signals corresponding to
music of the same genre share certain common charac-
teristics as they are performed by similar types of in-
struments and have similar pitch distribution and rhyth-
mic patterns (Aucoutier and Pachet, 2003). Motivated by
this, we presented a novel approach based on classification
of features extracted from component signals that corre-
sponded to musical instrument teams (sources), as these
sources have been identified by a source separation pro-
cess. For source separation, we presented an improved
algorithm based on convolutive sparse coding. Evaluation
of the performance of our method showed clear improve-
ment in classification accuracy and execution speed over
our previous methods (Lampropoulos et al., 2005a).

Currently, we are in the process of improving further
the classification efficiency of our system by considering
additional low-level music features, specifically MPEG-7
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low-level audio descriptors, incorporating other classifiers
such as immune classification algorithms (Lampropou-
los et al., 2005b) and additional classifiers included in
the WEKA tool (WEKA). Another direction of our fu-
ture work will be the identification of specific instruments
from the separated component sources. This and related
work is currently in progress and its results will be an-
nounced shortly.
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