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PL 35(A)
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ABSTRACT
An efficient model for discovering repeated patterns in
symbolic representations of music is presented. Com-
binatorial redundancy inherent in the pattern discovery
paradigm is usually filtered using global selective mech-
anisms, based on pattern frequency and length. The
proposed approach is founded instead on the concept of
closed pattern, and insures lossless compression through
an adaptive selection of most specific descriptions in the
multi-dimensional parametric space. A notion of cyclic
pattern is introduced, enabling the filtering of another
form of combinatorial redundancy provoked by successive
repetitions of patterns. The use of cyclic patterns implies a
necessary chronological scanning of the piece, and the ad-
dition of mechanisms formalising particular Gestalt prin-
ciples. This study shows therefore that automated analysis
of music cannot rely on simple mathematical or statistical
approaches, but requires instead a complex and detailed
modelling of the cognitive system ruling the listening pro-
cesses. The resulting algorithm is able to offer for the first
time compact and relevant motivic analyses of monodies,
and may therefore be applied to automated indexing of
symbolic music databases. Numerous additional mecha-
nisms need to be added in order to consider all aspects of
music expression, including polyphony and complex mo-
tivic transformations.

Keywords: Closed pattern discovery, Gallois connec-
tion, Formal Concept Analysis, cyclic pattern, cognitive
modelling.

1 INTRODUCTION
This paper is focused on automated description of sym-
bolic music, and presents an efficient algorithm for dis-
covering repeated patterns. Repeated patterns are struc-
tures easily perceived by listeners, experienced or not, and
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represent therefore one of the most salient characteristics
of musical works (Ruwet, 1987;   Lerdahl and Jackend-
off, 1983). The pattern discovery system described in this
paper is applied uniquely to symbolic representation. A
direct analysis on the signal level would arouse tremen-
dous difficulties. A pattern extraction task on the sym-
bolic level, although theoretically simpler, remains ex-
tremely difficult to carry out, and its automation has not
been achieved up to now. Indeed, computer researches on
this subject hardly offer results close to listeners’ or musi-
cologists’ expectations. Hence the pattern discovery task
is too complex to be undertaken directly at the audio sig-
nal, and needs rather a prior transcription from the audio
to the symbolic representations, in order to carry out the
analysis on a conceptual level.

We previously showed that the pattern discovery task
leads to a problem of combinatorial redundancy, which
needs to be carefully controlled (Lartillot, 2004). We
proposed therefore a heuristic based on maximally spe-
cific description of pattern classes and introduced a notion
of implication relation between multi-dimensional pattern
description. This new paper relates both heuristics to
the concept of closed pattern (Zaki, 2005), and to to the
subconcept-superconcept relation defined in the Formal
Concept Analysis (FCA) theory (Ganter and Wille, 1999),
stemming from the Gallois connection between pattern
description and pattern class. The second part of the pa-
per introduces the concept of cyclic patterns and presents
an extension of the subconcept-superconcept relation to
this new paradigm. This enables a simple modelling and
efficient control of the complex structural configurations
found in every musical piece, even simple ones. A less
formalised description of the whole theory can be found
in Lartillot (2005).

2 CLOSED PATTERN DISCOVERY
This section presents the basic problem of pattern discov-
ery and introduces the notion of closed pattern.

2.1 Definitions

Let S =< a1a2 . . . aN > be a sequence of elements of
some set ai ∈ A. A subsequence Si,l of index i ∈ [1, N ]
and of length l ∈ [1, N + 1− i] is the sequence :

Si,l =< aiai+1 . . . ai+l−1 > . (1)
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A sub-sequence Si,k is included in another sub-
sequence Sj,l, noted Si,k ⊂ Sj,l when j 6 i and i + k 6
j + l. In a first simple version, a pattern of length l,
denoted P ∈ P(S), can be defined as a repeated sub-
sequence:

P ∈ P(S) ⇐⇒ ∃(i, j) ∈ [1, N ]2, P = Si,l = Sj,l.
(2)

The support of a pattern P , denoted σ(P ), is the num-
ber of occurrences of the pattern, i.e.

σ(P ) =
∣∣{i ∈ [1, N ], Si,l = P

}∣∣. (3)

2.2 Redundancy Filtering

The task of discovering repeated patterns leads to combi-
natorial problems. Indeed each pattern of length l, con-
tains

∑l
i=1 i = l(l−1)

2 = O(l2) sub-patterns. All these
sub-patterns are explicitly discovered by any basic pattern
discovery algorithm (Zaki, 2005). One common way to
solve this problem consists in focusing on the maximal
patterns P of the sequence S, denoted P ∈M(S), which
are patterns of S not included in any other pattern of S :

P ∈M(S) ⇐⇒
{

P ∈ P(S)
@Q ∈ P(S), P ⊂ Q.

(4)

This heuristic enables a significant reduction of the
number of discovered pattern, but leads also to a loss of in-
formation. Indeed, not all the sub-patterns may be imme-
diately reconstructed knowing the maximal patterns. For
instance, the grey sub-pattern in figure 1 is redundant as
it can be simply retrieved as a suffix of the black pattern.
However, in figure 2, the same grey sub-pattern is not re-
dundant any more, because its support (4) is larger than
the support of the black pattern (2).

Figure 1: The grey sub-pattern is not a closed pattern: it
is a simple suffix of the black pattern.

Figure 2: The grey sub-pattern is now closed: its support
is bigger than the support of the black pattern.

A pattern P will be called closed, denoted P ∈ C(S),
if and only if there exists no proper super-pattern Q of
same support :

P ∈ C(S) ⇐⇒


P ∈ P(S)

@Q ∈ P(S),
{

P ⊂ Q
σ(P ) = σ(Q).

(5)

The set of closed patterns offers a compact and lossless
description of the musical piece.

2.3 An Incremental and Chronological Approach

This paper proposes an incremental and chronological ap-
proach to closed pattern discovery. Section 4 justifies this
strategy, by showing the necessity to model successive
repetitions of a same pattern as a traversal through one sin-
gle cyclic pattern, and hence to consider a chronological
approach of music. A detailed and illustrated description
of the algorithm summarised below has been presented in
(Lartillot, 2004).

2.3.1 Incremental approach

The successive prefixes of each pattern are discovered pro-
gressively: they are considered as successive intermediary
states of a pattern chain (PC) whose final state represents
the whole pattern. At each step of the progressive con-
struction, all the occurrences of the last discovered prefix
are considered. Identical continuations form new exten-
sions of the prefix, represented as children of the current
state. Since each state can accept several children, the set
of all patterns form a tree, called pattern tree (PT). An
example of PT can be seen in figure 4, above the score.

Similarly, pattern occurrences are also represented as
chains – called pattern occurrence chains (POCs) – whose
successive states represent the successive prefixes (see fig-
ure 4, below the score). Each state of a POC is related to
its corresponding PC. As each pattern occurrence can fea-
ture several different possible continuations, the set of all
pattern occurrences that are initiated by one note forms
a tree, called pattern occurrence tree (POT). The root of
each POT is associated to the root of the PT (node a in
figure 4), which represents the simple concept of note, and
is therefore called note pattern. Since all notes can poten-
tially initiate a POT, they are all occurrences of the note
pattern.

The inclusion relation between patterns may be de-
composed as a product of two sub-relations: prefix and
suffix relations. Any sub-pattern will then be considered
as a prefix of a suffix of a pattern. The closure of a pattern
P may then be assessed following these two relations.

1. A pattern P is prefix-closed if there does not exist
pattern Q of which P is a prefix of same support.
Since all the prefixes of patterns are displayed in PTs,
non prefix-closed patterns are not discarded. The ex-
plicit representation of prefixes as intermediary states
of pattern chains induces a mere linear complexity, as
each pattern of length l is represented by l states.

2. The problem of close patterns selection will therefore
be studied along suffix relations only. A pattern P is
suffix-closed if there does not exist any pattern Q of
which P is a suffix of same support.

2.3.2 Chronological approach

The pattern discovery process is chronological: the main
routine of the algorithm consists in a single traversal of the
sequence S, from the first element ai to the last element
aN . Each new element ai induces an update of the whole
pattern tree.

For this purpose, hash-tables memorise all the possi-
ble continuations of P , that is, all the possible elements
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appearing just after each of its occurrence. If a previous
occurrence of pattern P has been continued by an element
identical to ai, then an extension P ′ of pattern P may
be discovered (if not already) and represented as one of
its child. The suffix-closed condition should however ap-
ply: there should not exist a pattern Q′ of which P ′ is a
suffix of same support. During the chronological analy-
sis, a pattern P ′ that was first considered as non-closed
may become closed once discovering a new occurrence
that is not an occurrence of the super-pattern Q′ (an ex-
ample will be shown in paragraph 3.3). Super-patterns Q′

can easily be retrieved, as extensions of the corresponding
super-patterns Q of P by the same element ai. Not all
the super-patterns Q need to be considered, but only those
containing an occurrence concluded by previous element
ai−1.

3 MULTI-DIMENSIONAL CLOSED
PATTERNS

In previous subsection, pattern was searched in sequences
of elements S =< a1a2 . . . aN >, ai ∈ A. Music, on the
contrary, is expressed in a multi-dimensional parametric
space.

3.1 Multi-Parametric Description of Music

The model presented in this paper only analyses monodic
sequences, i.e. successions of notes without superposi-
tion. Any monodic sequence can therefore be represented
as previously :

S =< n1n2 . . . nN >,ni ∈ N , (6)

where N is the parametric space of notes. In the model,
this note space is simply reduced to :

N = diat× chro× rhyt (7)

where

• diat, or diatonic pitch space, represents pitches as
positions in the implicit tonal scale. Diatonic trans-
positions will be detected in this space.

• chro, or chromatic pitch space, represents pitches as
positions on the piano keyboard. Following the MIDI
standard, with middle C is associated the value 60.

• rhyt, or metrical space, represents temporal positions
in term of distance from the beginning of the musical
sequence. The rhythmic unit of the metrical space is
given by the time signature.

The pattern discovery task cannot be directly applied
to this note sequence S, because each successive note
is related to a distinct metrical position and is therefore
distinct. Even if the metrical space is discarded, neither
rhythmic patterns nor transposed melodic patterns may be
discovered. Following common practice, the musical se-
quences will be modelled as a succession of intervals be-
tween successive notes :

S = (−−→n1n2 � −−→n2n3 � . . . � −−−−−→nN−1nN ). (8)

An interval −−−−→nini+1 ∈ −→N is a vector between two
points of the note space N

ni = (diat = di, chro = ci, rhyt = ti)
ni+1 = (diat = di+1, chro = ci+1, rhyt = ti+1)

(9)

and can therefore be described by the three coordinates :

−−−−→nini+1 =

 diat(−−−−→nini+1)
chro(−−−−→nini+1)
rhyt(−−−−→nini+1)

 =

 di+1 − di

ci+1 − ci

ti+1 − ti

 .

(10)

diat: -1+2 0 -3 +1 -1+2 0+1
chro: -1+3 0 -5 +2 -2+3 0+1
rhyt:

pattern occurrences:

pattern abcde:

1.5 1 2 1 1.5 .5 1 2.5

diat: -1+2 0+1
rhyt: 1.5 1 2.5

a b c d e a b c d e

a b c d e

Figure 3: Multi-dimensional description of a musical
sequence, which contains two occurrences of a pattern
abcde.

3.2 Formal Context Representation of Patterns

We will represent musical patterns with the help of a con-
ceptual framework that defines objects associated with
different kinds of attributes (Ganter and Wille, 1999).
These attributes consist not only of the different musi-
cal dimensions, but also of the different sub-patterns and
super-patterns. Following the incremental and chronolog-
ical approach explained in paragraph 2.3, we can restrict
our study of the inclusion relations between patterns to
suffix relations. In this respect the objects of the pattern
descriptions are the successive notes of the musical se-
quence forming the set N (S). Each note ni ∈ N (S)
relates to a specific temporal context, defined by the part
of the musical sequence concluded by this note ni.

Each note ni is described firstly by the different musi-
cal characteristics of the preceding interval: −−−−→ni−1ni.

D0,p
desc(ni) : desc(−−−−→ni−1ni) = p,

desc ∈ {diat, chro, rhyt}, p ∈ desc.
(11)

Each note ni is also described by the musical characteris-
tics of the previous intervals:

Dj,p
desc(ni) : desc(−−−−−−−→ni−j−1ni−j) = p,

desc ∈ {diat, chro, rhyt}, p ∈ desc.
(12)

Then the pattern description of the sequence S may be
expressed as a formal context (N (S),D, I) where :

• the set of objects is N (S): the set of notes in S,

• the set of attributes is D: the set of elementary musi-
cal descriptions defined by equations 11 and 12,
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• and I is the binary relation between N (S) and D,
called incidence, defined by:

(ni, δ) ∈ I ⇐⇒ δ(ni) is true. (13)

The derived description C ′ of a set of notes C ⊂
N (S) is defined as the common description of all these
notes:

C ′ =
{
δ ∈ D | ∀n ∈ A, (n, δ) ∈ I

}
. (14)

The notes in C are therefore occurrences of a same pat-
tern, which is maximally described by C ′.

The derived class D′ of a complex description D ⊂ D
is dually defined as the set of notes complying with this
description:

D′ =
{
n ∈ N (S) | ∀δ ∈ D, (n, δ) ∈ I

}
. (15)

The pattern discovery task consists in finding exhaustive
class D′ sharing a same description D. The trouble is, lots
of different descriptions Di may lead to same classes D′

i.

3.3 Formal Concept Representation of Patterns

The derivators operations defined by equation 14 and 15
establish a Gallois connection between the power set lat-
tices on N (S) and D. The Gallois connection leads to a
dual isomorphism between two closure systems, whose
elements, called formal concepts of the formal context
(S(S),D, I) corresponds exactly to the close patterns
P = (C,D), verifying:

C ⊂ N (S), D ⊂ D, C ′ = D, and D′ = C. (16)

For a close pattern P = (C,D), C is called the extent of
D and D the intent of C. We may simply call C and D
respectively the class and the description of P .

Hence, for a set of patterns Pi = (D′
i, Di) of same

class D′
i = C, the close pattern P = (C,D) is described

using the derived operator C ′ defined in equation 14: it
contains all the elementary descriptions common to all
notes of the class C. In other words, closed patterns are
described as precisely as possible. However, as listeners
tend to perceive only repetition of connex sub-sequences,
only the descriptions of the longest set of contiguous in-
tervals (Dj � Dj−1 � . . . � D0) leading to the context
note should be selected. Older descriptions Dj+k should
be discarded if there is no description Dj+1 associated to
step j + 1. We have proposed a further continuity con-
straint, that seems to correspond more deeply to listeners
perception, stating that contiguous intervals should be de-
scribed by same dimensions:

∀i ∈ [1, j],∃desc ∈ {diat, chro, rhyt},
∃(p, p′) ∈ desc2,Dj,p

desc and Dj−1,p′

desc

(17)

Closed patterns, as formal concepts, are naturally or-
dered by the subconcept-superconcept relation defined by

(C1, D1) < (C2, D2) ⇐⇒ C1 ⊂ C2 ( ⇐⇒ D2 ⊂ D1).
(18)

(C1, D1) may therefore be considered as more specific
than (C2, D2).

The incremental and chronological pattern discovery
methodology presented in section 2.3 may be generalised
using this multi-parametric definition of closed pattern.
For instance, pattern a � b � c � d � e (more simply
denoted e), in figure 4, features melodic and rhythmical
descriptions:(

diat = 0
rhyt = .5 � diat = 0

rhyt = .5 � diat = −2
rhyt = .5 � rhyt = 4

)
whereas pattern a � f � g � h � i (or i) only features
its rhythmic part:

(rhyt = .5 � rhyt = .5 � rhyt = .5 � rhyt = 4).

Hence pattern e is more specific than pattern i. When
only the two first occurrences are analysed, as both pat-
terns have same support, only the more specific pattern e
should be explicitly represented. But the less specific pat-
tern i will be represented once the last occurrence is dis-
covered, since it is not an occurrence of the more specific
pattern e.

a b c d e a b c d e

f g h i f g h i

a b c

g

d

hf

a

f g h i

0
.5

diat:
rhyt:

.5 .5 .5
i

4

.5 .5
0 -2

e4

more specific than

Figure 4: The rhythmic pattern afghi is less specific than
the melodico-rhythmic pattern abcde.

3.4 Optimal score description

In order to reduce the space complexity of the pattern rep-
resentation, and also to simplify as much as possible the
pattern description of the musical score, to each closed
pattern P = (C,D) will be associated a specific class
SC(P ) which consists of the set of occurrences that are
not included into classes of more specific patterns:

SC(P ) = C\
⋃

(C′,D′)<(C,D)

C ′. (19)

Reversely, the general pattern class can be retrieved by
unifying the specific class with the union of the specific
classes of all the more specific patterns :

C = SC(P ) ∪
⋃

P ′<P

SC(P ′). (20)

During the chronological analysis of the musical
score, only the specific classes are constructed. But each
time a specific pattern occurrence is discovered, all the
less specific patterns need to be recalled by the algorithm,
because their extensions may lead to the discovery of new
specific patterns. For instance, in figure 5, groups 1 and 3
are occurrences of pattern h, and groups 3 and 4 are occur-
rences of pattern d. Since pattern d is more specific, the
less specific pattern h does not need to be associated with
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group 4 (that is why it is represented in grey). However
in order to detect groups 2 and 5 as occurrences of pattern
l, it is necessary to implicitly consider group 4 as an oc-
currence of pattern h. Hence, even if pattern h, since less
specific than d, was not explicitly associated with group
4, it had to be considered implicitly in order to construct
pattern l. Implicit information is reconstituted through
a traversal of the pattern network along the subconcept-
superconcept relations.

a b c d ea b c d e

f g h i

a b c

g

d

hf

j

0
.5

diat:
rhyt:

.5 .5 .5
i

4
4 1

k l
1

.5 .5
0 -2

+1
-2

e4

a

f g
k l

h i
j k lj

f g h i

1 3 4
2 5

Figure 5: Group 4 can be simply considered as occurrence
of pattern d. However, in order to detect group 5 as occur-
rence of pattern l, it is necessary to implicitly infer group
4 as occurrence of pattern h too.

3.5 Generalization of patterns

New patterns can be discovered through a simple general-
isation of already known patterns. In bar 7 of figure 6, the
two first notes form an occurrence of pattern h described
by diat = +1 and rhyt = 1. The third note cannot how-
ever be associated with the known extension of pattern h
into pattern i with description diat = 0 and rhyt = 2, be-
cause the melodic description diat = 0 does not match
here. However, as the rhythmic description rhyt = 2
matches, a new extension j is discovered as a generali-
sation of pattern i.

a b c

d e

a b c

d e

d e

a b c

f g f g h i

a b c a b c a b c

h j

a b k a b k

1
+2,1

0,2
k2

j2

0,2

f g

-3,1
0,2

h i
+1,1

(diat,rhyt)

0,2

h i

a b c

76 8

specification

generalization

generalization

Figure 6: Progressive discovery of the pattern repetitions
on the score and the resulting pattern tree (below the
score). Pattern descriptions in grey are less specific than
simultaneous descriptions in black.

The less specific patterns, although usually not explic-
itly represented in the analysis, should be updated if nec-
essary. In particular, when a generalisation of a pattern is
discovered, the generalisation of all its more general pat-
terns should also be considered. For instance, as i has
been generalised into j, c should be generalised into k in

the same way. In this way, the analysis of the next bar (8)
consists simply in recognising the already known general
pattern k.

4 CYCLIC PATTERNS
In this section, we present another important factor of re-
dundancy that, contrary to closed patterns, has not been
studied in current general algorithmic researches.

4.1 Redundancy Due to Successive Repetitions

Combinatory explosion can be caused by successive repe-
titions of a same pattern (for instance the pattern a � b �
c in figure 7, of description (rhyt = 1 � rhyt = 2)). As
each occurrence is followed by the beginning of a new oc-
currence, each pattern can be extended – leading to pattern
d of description (rhyt = 1 � rhyt = 2 � rhyt = 1) – by a
new interval whose description (rhyt = 1) is identical to
the description of the first interval of the same pattern (i.e.,
pattern b). This extension can be prolonged recursively
(into e, f , etc.), leading to a combinatorial explosion of
patterns that are not perceived due to their complex inter-
twining.

d e f g

d e f g

a b c d

a b a b c

a b c

a b c

f g

d e

d e

a b c

1rhyt: 2 1 2 1 2
a b c

Figure 7: Multiple successive repetitions of pattern abc
form a complex intertwining of non-perceived structures.

4.2 Cyclic Patterns

The graph representation (figure 7) shows that the last
state of each occurrence of pattern c is superimposed on
the first state of the following occurrence. Listeners seem
to tend to fusion these two states, and to perceive a loop
from the last state (c) to the first state (a) (figure 8). The
initial acyclic pattern a � b � c leads therefore to a cyclic
pattern that oscillates between two states b′ � c′, corre-
sponding to rhythmic values 1 and 2. Indeed, when lis-
tening to the remainder of the rhythmic sequence, we ac-
tually perceive this progressive oscillation between these
two states b′ and c′. Hence this cycle-based modelling ex-
plains a common listening strategy, and resolves the prob-
lem of combinatorial redundancy.

b’ c’ b’ c’

1 1rhyt:
2

2

1
a b c b’ c’

a b c b’ c’

Figure 8: The successive repetitions of pattern a � b � c
lead to an oscillation between states b′ � c′.
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This cyclic PC b′ � c′ is considered as a continuation
of the original acyclic PC a � b � c (figure 8) . Indeed,
the first repetition of the rhythmic period is not perceived
as a period as such but rather as a simple pattern: its suc-
cessive notes are simply linked to the progressive states a,
b and c of the acyclic PC. On the contrary, the following
notes extends the POC, which cannot therefore be associ-
ated to the acyclic PC anymore, and are therefore linked to
the successive states of the PC (b′ and c′). The whole peri-
odic sequence constitutes then a single POC representing
the traversal of the acyclic PC followed by the cyclic PC.

It can be remarked also that, by property of the cyclic
PC, no segmentation is explicitly represented between
successive repetitions. The periodic sequence in figure
8 can be considered as a succession of periods quaver-
crochet, or on the contrary crochet-quaver. Listeners may
be inclined to segment at any phase of the cyclic PC, or
not to segment at all.

This additional concept immediately solves the redun-
dancy problem. Indeed, the unique POC that is progres-
sively extended is more specific than its suffixes, which
cannot therefore be extended any more.

This phenomenon of successive repetition, although
very frequent in musical expression, has been rarely stud-
ied. Cambouropoulos (1998) proposed to control the com-
binatorial explosion by selecting, once the analyses com-
pleted, patterns featuring minimal temporal overlapping
between occurrences. The trouble is, as the selection
is inferred globally, relevant patterns may be discarded.
Besides combinatorial redundancy remains problematic
since the filtering is carried out after the actual analysis
phase. Our focus on local configurations enables a more
precise filtering.

4.3 General and Specific Cycles

The application of this concept on the multidimensional
musical space requires a generalisation of specificity re-
lations, defined in previous section, to cyclic patterns. A
cyclic pattern C is considered as more specific than an-
other cyclic pattern D when the sequence of description
of pattern D is included in the sequence of description of
pattern C.

In Figure 9, the seven first notes of the cycle oscillate
around the cyclic PC b′ � c′ described by:

rhyt = 1 �
rhyt = 2
diat = 0 .

Then appears a more specific cycle d′ � e′ described by

rhyt = 1
diat = +1 �

rhyt = 2
diat = 0

and is generalised after four notes to cycle d′′ � f ′ that
does not feature the unison interval any more:

rhyt = 1
diat = +1 � rhyt = 2.

Moreover, following the rule of generalisation of gener-
alised patterns explained in paragraph 3.5, the more gen-
eral cycle b′ − c′ too needs to be generalised into a cycle

a

a

b c b’ c’

b

0,2

0,2

1

1

1

11

c b’ c’

g

+1,1

+1,1

+1,1

(diat,rhyt)

2

d

0,2
e

f
2

2

b’ c’ b’

g b’’ g’ b’’ g’ b’’ g’

f’

a d e d’

f d’’

0,2

d’ e’

+1,1

+1,1
d’’ f’

2

b’’ g’

specification

generalization
generalization

Figure 9: More detailed analysis of the perceived cyclic
configurations.

b′′ − g′ where the unison interval has been discarded:

rhyt = 1 � rhyt = 2.

These different cycles seem to be perceptible by listen-
ers. Moreover, the integration of this phenomenon into
the model helps insuring the relevance of the results
and avoiding numerous unwanted combinatorial redun-
dancies.

4.4 The Figure/Ground Rule

Another kind of redundancy appears when occurrences of
a pattern – such as the melodico-rhythmic pattern c in fig-
ure 10, described by diat = −2 and rhyt = 1 – are su-
perposed to a cyclic pattern (b′), such that the pattern (c)
is more specific than the cycle period (b′, simply rhyth-
mic: rhyt = 1). In this case, the intervals that follow
these occurrences are identical, since they are related to
the same state (b′) of the cyclic pattern. Logically the
pattern could be extended following the successive exten-
sions of the cyclic patterns (leading to patterns d, e, etc.).
This phenomenon, which may frequently appear in a mu-
sical piece, would lead to another combinatorial prolif-
eration of redundant structures if not correctly controlled
by relevant mechanisms. On the contrary, following the
Gestalt Figure/Ground rule, listeners tend to perceive the
pattern c as a specific figure that emerges above the pe-
riodic background. Following this rule, the figure cannot
be extended (into d) by a description that can be simply
identified with the background extension.

5 RESULTS
This model was first developed as a library of OpenMusic,
called OMkanthus. A new version will be included in the
next version 2.0 of MIDItoolbox (Eerola and Toiviainen,
2004), a Matlab toolbox dedicated to music analysis. The
model can analyse monodic musical pieces (i.e., consti-
tuted by a series of non-superposed notes) and highlight
the discovered patterns on a score.
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Treble

-2
 1 1
a
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Figure 10: Pattern c is a specific figure, above a back-
ground generated by the cyclic pattern b′.

5.1 Experiments

The model has been tested with different musical se-
quences taken from several musical genres (classical mu-
sic, pop, jazz, etc.). Table 1 shows some results. The
experiment has been undertaken with version 0.6.8 of
OMkanthus on a 1-GHz PowerMac G4. A musicologist
expert has validated the analyses. The proportion of pat-
terns considered as relevant is displayed in the table.

The analysis of a medieval song called Geisslerlied
(Ruwet, 1987) – sometimes used as a reference test for
formalised motivic analysis – gave quite relevant results.
The analysis has been actually carried out on a slight sim-
plification of the actual piece presented by Ruwet, exclud-
ing local motivic variations out of reach of the current
modelling.

The melodico-rhythmic analysis of the French song
Au clair de la lune posed problems: 21 patterns were dis-
covered from a 44-note long sequence. This is due to the
fact that the successive steps of progressive generalisation
or specification of cycles are currently modelled using dis-
tinct intermediary cyclic patterns. The inference of these
redundant cyclic patterns will be avoided in further works.

The algorithm has been successfully applied on a
melodic analysis of a complete two-voice Invention by
J.S. Bach. Figure 11 shows the analysis of the 21 first bars.
The repetition of ascending quarter notes in bars 3 and 4
has not been detected because the contour dimension was
not considered in the experiment. The cyclic patterns are
represented by graduated lines, the graduation represent-
ing each return of one possible phase. As explained in
section 4.2, no preference is given by the model between
different possible phases of the same cycle. The rhyth-
mic analysis of the piece, on the contrary, failed, due to
the alternation of sequences of either quarter notes or 8th
notes, which will require a formalisation through hierar-
chical pattern chains (where successive states of higher-
level patterns are linked to distinct lower-level patterns).

The analysis of The Beatles’ Obla Di Obla Da melody
shows 14 relevant pattern classes, representing the cho-
rus, verses, phrases and motives inside each of these struc-
tures. The 4 irrelevant patterns are redundant patterns sub-
sumed by the 14 relevant ones.

In all these pieces, some patterns are considered as ir-
relevant because they cannot be perceived as such by lis-
teners. Additional mechanisms should be added to prevent
these irrelevant inferences, based on short-term memory,
top-down mechanisms, etc.

5.2 About Algorithm Complexity

The algorithm complexity may be expressed first in terms
of discovered structures: proliferation of redundant pat-
terns, for instance, would lead to combinatorial explosion,
since each new structure needs proper processes assessing
its interrelationships with other structures, and inferring
possible extensions. Hence a maximally compact descrip-
tion insures in the same time the clarity and relevance
of the results and the limitation of combinatorial explo-
sion. Concerning technical implementation, the prototype
needs further optimisations. Yet the modelling has been
conceived with a view to minimising computational costs.
Hence the identification of similar descriptions is based on
hash tables, as explained in paragraph 2.3.2, which reduce
time complexity.

The overall computational modelling results in a com-
plex system formed by a large number of highly depen-
dent mechanisms. Without a real synthetic vision of the
whole system, no general assessment of the global com-
plexity of the modelling has been achieved yet. The com-
plete rebuilding of the modelling currently undertaken
should enable a better awareness and control of complex-
ity.

6 CURRENT RESEARCHES
The structures currently found are based solely on pattern
repetitions. Segmentation rules based on Gestalt princi-
ples of proximity and similarity (Lerdahl and Jackendoff,
1983) (Cambouropoulos, 1998) need to be added. Al-
though this rule plays a significant role in the percep-
tion of large-scale musical structures, there is no com-
mon agreement on its application to detailed structure,
because it highly depends on the subjective choice of
musical parameters used for the segmentations (Deliège,
1987). The study will focus in particular on the compet-
itive/collaborative interrelations between the two mecha-
nisms, in particular the masking effect of local disjunction
on pattern discovery.

Musical transformations should be considered, such as
local insertion or deletion of notes. Solutions have been
proposed (Rolland, 1999) based on optimal alignments
between approximate repetitions using dynamic program-
ming and edit distances. We are developing algorithms
that automatically discover, from the rough surface level
of musical sequences, musical transformations revealing
the sequence of pivotal notes forming the deep structure
of these sequences. These mechanisms induce new con-
nections between non-successive notes, transforming the
syntagmatic chain of the original musical sequence into
a complex syntagmatic graph. The direct application of
the pattern discovery algorithm on this syntagmatic graph
will enable the detection of approximate repetitions and
require the introduction of further perceptual heuristics in
order to select precisely the relevant results.

Our approach is limited to the detection of repeated
monodic patterns. Music in general is polyphonic, where
simultaneous notes form chords and parallel voices. Re-
searches have been carried out in this domain (Meredith
et al., 2002), focused on the discovery of exact repetitions
along different separate dimensions. Our model will be
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Table 1: Results of analyses, either melodic (M) or melodico-rythmic (M+R), performed by OMkanthus 0.6.8.

Musical sequence Analysis Pattern classes Computation
Name Notes type Discovered Relevant Success time

Geisslerlied, slightly simplified 108 M 6 5 83% 2.2 sec.
Au clair de la lune (folk song) 44 M+R 21 5 24% 5.6 sec.

Bach, Invention in D minor, BWV 775 283 M 49 34 69% 37.6 sec.
Mozart, Sonata in A, K331 36 M+R 14 10 71% 0.8 sec.

first theme, first half, melody
The Beatles, Obla Di Obla Da 390 M 14 10 71% 28.1 sec.

Figure 11: Automated motivic analysis of J.S. Bach’s Invention in D minor BWV 775, 21 first bars. The occurrences of
each pattern class are designated in a distinct way.

generalised to polyphony following the syntagmatic graph
principle. We are developing algorithms that construct,
from polyphonies, syntagmatic chains representing dis-
tinct monodic streams. These chains may be intertwined,
forming complex graphs along which the pattern discov-
ery algorithm will be applied. Pattern of chords may also
be considered in future works.

The automated discovery of repeated patterns can be
applied to automated indexing of musical content in sym-
bolic music databases. This approach may be generalised
later to audio databases, once robust and general tools for
automated transcription of musical sound into symbolic
scores will be available. A new kind of similarity distance
between musical pieces may be defined, based on these
pattern descriptions, offering new ways of browsing inside
a music database using pattern-based similarity distance.
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