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ABSTRACT 
This paper presents ACE (Autonomous Classification 
Engine), a framework for using and optimizing classifi-
ers. Given a set of feature vectors, ACE experiments with 
a variety of classifiers, classifier parameters, classifier 
ensembles and dimensionality reduction techniques in 
order to arrive at a good configuration for the problem at 
hand. In addition to evaluating classification methodolo-
gies in terms of success rates, functionality is also being 
incorporated into ACE allowing users to specify con-
straints on training and classification times as well as on 
the amount of time that ACE has to arrive at a solution. 

ACE is designed to facilitate classification for those 
new to pattern recognition as well as provide flexibility 
for those with more experience. ACE is packaged with 
audio and MIDI feature extraction software, although it 
can certainly be used with existing feature extractors. 

This paper includes a discussion of ways in which ex-
isting general-purpose classification software can be 
adapted to meet the needs of music researchers and 
shows how these ideas have been implemented in ACE. 
A standardized XML format for communicating features 
and other information to classifiers is proposed. 

A special emphasis is placed on the potential of clas-
sifier ensembles, which have remained largely untapped 
by the MIR community to date. A brief theoretical dis-
cussion of ensemble classification is presented in order 
to promote this powerful approach. 
 
Keywords: music classification, classifier ensembles, 
combining classifiers, optimization, MIR 

1 INTRODUCTION 
Classification techniques play an essential role in many 
MIR-related research areas. These include genre classifi-
cation, similarity analysis, music recommendation, per-
former identification, composer identification and in-
strument identification, to name just a few. An examina-
tion of the MIREX evaluation topics clearly demon-
strates the importance of classification in MIR. 

Despite this importance, there has been relatively lit-

tle work on developing standardized and easy-to-use 
classification software with the particular needs of music 
in mind. A survey of published MIR papers reveals that 
many researchers either implement their own custom-
built systems or use off-the-shelf pattern recognition 
software that was developed for fields other than music. 

The former approach results in time wasted through 
duplication of effort and, potentially, relatively limited 
software, as one only has so much time to devote to 
building classifiers if this is only a part of a larger re-
search project. Using general pattern recognition frame-
works can work well with some limited applications, but 
one inevitably encounters complications, limitations and 
difficulties due to the particularities of music. 

Standardized classification software especially 
adapted to MIR could therefore be of significant benefit. 
Fortunately, some work has been done in this area. Mar-
syas (Tzanetakis and Cook 1999) in particular has been 
used effectively by many researchers, and M2K (Downie 
2004) has great promise. ACE (Autonomous Classifica-
tion Engine) is proposed here as a framework that builds 
upon these important systems and addresses a number of 
areas that remain to be dealt with. 

Section 2 of this paper discusses the shortcomings of 
general-purpose pattern recognition frameworks with 
respect to music and proposes specific improvements. A 
particular emphasis is put on the importance of a stan-
dardized method of transmitting features from feature 
extractors to classification software. Several XML file 
formats are proposed in order to address this issue. 

Section 3 of this paper concentrates on grouping clas-
sifiers into ensembles. Many MIR researchers perform 
experiments with a variety of classifiers in order to find 
the ones that are best suited to their particular tasks. 
Only a few experiments, such as the Bodhidharma genre 
classification system (McKay 2004), however, have 
been conducted on combining these classifiers into en-
sembles.  

This is surprising, given the proven effectiveness of 
ensemble algorithms such as AdaBoost (Freund and 
Shapire 1996). Classifier ensembles have been gaining 
increasing attention in the machine learning and pattern 
recognition communities over the past decade, and the 
MIR community could certainly benefit from experi-
menting with the wide variety of potentially very power-
ful approaches that are available. This is particularly 
true considering the asymptotic behaviour that success 
rates appear to be demonstrating in a variety of MIR 
areas, as observed by Aucouturier and Pachet (2004). 

Of course, classifier ensembles do come at the cost of 
added complexity, and the variety of approaches avail-
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able can be daunting. Section 3 of this paper presents a 
brief survey of the field in order to encourage experi-
mentation with classifier ensembles in MIR research. 

Even when only one classifier is used, the variety and 
sophistication of classification techniques can make it 
difficult to decide which techniques and parameters to 
use. Even the most experienced pattern recognition re-
searchers must often resort to experimentation. The ACE 
framework has been designed to deal with this problem 
automatically. ACE performs optimization experiments 
using different dimensionality reduction techniques, 
classifiers, classifier parameters and classifier ensemble 
architectures. Particular efforts have been made to inves-
tigate the power of feature weighting (Fiebrink, McKay, 
and Fujinaga 2005). 

Functionality is also being built into ACE that allows 
it to analyze the effectiveness of different approaches 
not only in terms of classification accuracy, but also 
training time and classification time. This allows users to 
experimentally determine the best set of techniques to 
use for their particular priorities.  

ACE may also be used directly as a classifier. Once 
users have selected the classifier(s) that they wish to use, 
whether through ACE optimization or using pre-existing 
knowledge, they need only provide ACE with feature 
vectors and model classifications. ACE then trains itself 
and presents users with trained classifier(s). 

An important advantage of ACE is that it is open-
source and freely distributable. ACE is implemented in 
Java, which means that the framework is portable and 
easy to install. ACE has also been built with a modular 
and extensible design philosophy. It is a simple and 
well-documented matter for users to build upon ACE. 

Section 4 of this paper presents the ACE framework 
itself. The implementation and functionality of the soft-
ware are discussed, as are the benefits that it offers the 
MIR community. 

Any classification system is only as good as the fea-
tures that it receives. ACE is packaged with easy-to-use, 
flexible and, perhaps most importantly, highly extensible 
feature extraction software for extracting features from 
both audio and MIDI files. There is no requirement to 
use ACE with these feature extractors, however, as ACE 
is designed to work well with any feature extractors that 
can generate appropriately formatted output. Section 5 
presents a brief overview of the bundled feature extrac-
tion software. 

Both feature extraction and classification can be com-
putationally intensive. This is particularly true of a sys-
tem such as ACE, given its exploratory approach. Sec-
tion 6 details future plans for adapting ACE so that it 
can distribute its workload over multiple computers. 

Section 7 shows the results of several test classifica-
tion tasks performed with ACE in order to evaluate its 
effectiveness. These include tests on standard bench-
marks from the UCI Machine Learning Repository as 
well as two MIR-specific tasks. 

Section 8 summarizes this paper and Section 9 pre-
sents some ideas for future additions to ACE. 

2 DEVELOPING A CLASSIFICATION 
FRAMEWORK SUITED TO MIR 

2.1 Limitations of existing systems 

The development of a general pattern recognition soft-
ware package is not trivial. Each application domain has 
its own needs and peculiarities that might not occur to 
researchers in other fields. It is therefore no surprise that 
what general pattern recognition frameworks are avail-
able have important weaknesses with respect to MIR. 

In general, it appears that PRTools (van der Heijden 
et al. 2004) and Weka (Witten and Frank 2000) are the 
two most often used general frameworks in MIR. 
PRTools is a Matlab toolbox and Weka is a Java appli-
cation and code library. Both of these frameworks are 
very well-designed and powerful tools, but they do have 
several limitations when applied to MIR. 

PRTools has the disadvantage that it is reliant upon 
Matlab, a proprietary software package. Although 
PRTools itself is free for academic use, one must still 
purchase Matlab in order to use it. Furthermore, one 
must pay for PRTools if one wishes to use it commer-
cially, and its licence does not permit it to be redistrib-
uted. This means that any software that is developed 
using PRTools cannot be distributed without special 
permission, and it cannot be distributed with an open 
licence. So, although PRTools is certainly suitable for 
basic research and prototyping, it is problematic with 
respect to serious application development. 

This introduces some of the important concerns with 
respect to MIR software. The general consensus in the 
MIR community appears to be supportive of free, open 
source and fully distributable software. This is important 
in ensuring research transparency and sharing of results, 
and it is essential in allowing researchers to build upon 
each other’s work. 

Related to this is the importance of extensibility and 
modularity. In an open research community, not only 
should code be freely distributable, but it must be de-
signed so that others can expand upon it easily. 

Portability, documentation and ease of use and instal-
lation are also important considerations. Although lip 
service is often paid to these principles, they should be 
taken very seriously. It is not at all an uncommon ex-
perience for potential users to become discouraged by 
installation difficulties, such as linking errors, or by ar-
cane code documentation. 

Furthermore, good MIR software should be usable 
and understandable by users with a variety of skill lev-
els. The MIR community is composed of experts in a 
wide variety of fields, and it is not reasonable to expect 
all of them to be highly knowledgeable about classifica-
tion, even though it might be of benefit to their research.  

The Weka data mining framework largely meets these 
requirements. It is freely distributable, open source, rela-
tively well documented, implemented with all of Java’s 
platform-independence, beautifully designed and truly a 
pleasure to work with. It also includes a variety of inter-
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faces for users with different needs and abilities. It is, 
however, as is inevitable with any general system, miss-
ing some important qualities with respect to MIR. 

The most significant issues are related to the Weka 
ARFF file format that is used to store features and com-
municate them to classifiers. To begin with, there is no 
good way to assign more than one class to a given in-
stance. One possible solution is to break one multi-class 
problem into many binary classification problems, so 
that there is a separate ARFF file for every class, with all 
instances classified as either belonging or not belonging 
to each class. Alternatively, one could create a separate 
class for every possible combination of classes, with a 
resulting exponential increase in the numbers of classes. 

It is clear that neither of these solutions is ideal. Un-
fortunately, this is a problem with classification systems 
in general, not just Weka. This is understandable, as 
most pattern recognition tasks require classification into 
one and only one class. Unfortunately, a great deal of 
musicological research involves certain unavoidable 
ambiguities, and the imposition of only one class mem-
bership on each instance is unrealistic for tasks such as 
genre classification and many types of similarity-related 
classification, for example. 

A second problem is that ARFF files do not permit 
any logical grouping of features. Each feature is treated 
as an independent quantity with no relation to any other 
feature. One often encounters multi-dimensional features 
in music, and it can be useful to maintain some logical 
relationship between the components of such features. 
Power spectra, MFCC’s, bins of a beat histogram and 
instruments present are just a few examples. Maintaining 
a logical relationship between the values of multi-
dimensional features allows one to perform classifica-
tions in particularly fruitful ways that take advantage of 
their interrelatedness, particularly with respect to classi-
fier ensembles. Training one neural net on MFCC’s, for 
example, and using another classifier for features such as 
RMS or spectral centroid could prove much more fruit-
ful than mixing the MFCC’s in with the other features. 

A third problem is that ARFF files do not allow any 
labelling or structuring of instances. Each instance is 
stored only as a collection of feature values and a class 
identifier, with no identifying metadata. In music, it is 
often appropriate to extract features over a number of 
windows. Furthermore, some features may be extracted 
for each window, some only for some windows and 
some only for a recording as a whole. Weka and its 
ARFF files provide no way of associating the features of 
a window with the recording that it comes from, nor do 
they provide any means of identifying recordings or of 
storing time stamps associated with each window. This 
means that this information must be stored, organized 
and processed by some external software using some 
unspecified and non-standardized file format. 

A fourth problem is that there is no way of imposing 
a structure on the class labels. One often encounters hi-
erarchical structures in music, such as in the cases of 
genre categories or structural analyses. Weka treats each 

class as distinct and independent. This means that there 
is no native way to use classification techniques that 
make use of structured taxonomies. 

These criticisms are not meant to denigrate Weka in 
any way. Quite to the contrary, in fact, as Weka is sin-
gled out here only because it is arguably the best frame-
work available. One of the many positive aspects of 
Weka is that it is easy to write Java code that makes use 
of the excellent existing Weka code and adds functional-
ity to it, which is precisely what ACE does. 

Many of the issues discussed above apply to existing 
systems developed specifically with music in mind as 
well. As mentioned in Section 1, the two most well-
known and powerful such systems are Marsyas and 
M2K. 

Marsyas is a pioneering system that has been used 
very effectively in a number of research projects. Unfor-
tunately, there can be some portability and installation 
issues with this C++ based system. Marsysas is also cur-
rently centred around audio classification, and does not 
currently include MIDI functionality.  

It is also unfair to compare Marsyas to general classi-
fication systems such as Weka, as Marsyas was origi-
nally designed primarily as a feature extractor, and per-
forms very well at this task. Marsyas is, however, regu-
larly maintained by its creator, George Tzanetakis, and 
there are plans to extend its functionality and possibly 
port increasing amounts of Weka’s functionality to it. 

M2K is a graphical feature extraction and classifica-
tion framework based on the D2K parallel data mining 
and machine learning system. Although still in alpha 
release, and therefore impossible to fairly evaluate, M2K 
promises to be an extremely powerful and flexible sys-
tem for MIR prototyping.  

Unfortunately, M2K does inherit several licensing 
problems from D2K that potentially limit its use beyond 
prototyping. D2K’s licence can make it complicated for 
researchers outside the U.S.A. to obtain it, and forbids 
its use in commercial applications. This means that any 
system that uses D2K cannot itself be used for any non-
research-based tasks. Furthermore, D2K is not open 
source. 

2.2 Feature file formats 

It is clear from Section 2.1 that there is an important 
need for a standardized and flexible file format for stor-
ing feature values and communicating them to classifiers. 
Existing formats such as ARFF, while certainly suitable 
for the types of tasks their designers had in mind, are 
insufficient for the particular needs of MIR researchers. 

Several XML-based file formats are presented here in 
order to attempt to meet this need. XML is chosen be-
cause it is not only a standardized format for which 
parsers are widely available, but is also extremely flexi-
ble. It is a verbose format, with the result that it is less 
space efficient than formats such as ARFF, but this ver-
bosity has the corresponding advantage that it allows 
humans to easily read the files. This is particularly use-
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ful when one is working on debugging feature extrac-
tors. 

An important priority when developing a feature file 
format is to enforce a clear separation between the fea-
ture extraction and classification tasks, as particular re-
searchers may have reasons for using particular feature 
extractors or particular classification systems. The file 
format should therefore make it possible to use any fea-
ture extractor to communicate any features of any type 
to any classification system. This portability makes it 
possible to use features generated with different extrac-
tors with the same classification system, or a given set of 
extracted features with multiple classification systems. 

The reusability of files is another important consid-
eration. For example, it could be useful to use the same 
set of extracted features for a variety of tasks, such as 
genre classification as well as artist identification. Simi-
larly, it could be convenient to reuse the same model 
classifications with different sets of features. For exam-
ple, one could classify a given corpus of audio re-
cordings and then later perform the same task on sym-
bolic recordings of the same corpus using the same 
model classifications. Unfortunately, most current fea-
ture file formats merge feature values and model classi-
fications, making this kind of reusability difficult. 

The use of two separate files is therefore proposed for 
what is traditionally contained in one file, namely one 
file for storing feature values and another for storing 
model classifications. Unique keys such as file names 
can be used to merge the two files. The model classifica-
tion file can be omitted when using unsupervised learn-
ing or classifying unknown patterns. 

We also propose the use of an additional optional file 
for specifying taxonomical structures. This enables one 
to specify the relationships between classes, information 
which can be very useful for tasks such as hierarchical 
classification. This file can be omitted if only flat classi-
fication is to be used. 

One final optional file format is proposed for storing 
metadata about features, such as basic descriptions or 
details about the cardinality of multi-dimensional fea-
tures. Although not strictly necessary, such a file helps 
solidify the potential for full independence between fea-
ture extractors and classifiers. A researcher with a classi-
fier could be e-mailed a feature values file and a feature 
definitions file by other researchers, for example, and 
would need no additional information at all about the 
feature extractor used or the features it extracted. 

The explicit Document Type Definitions (DTD’s) of 
the four proposed ACE XML formats are shown in Fig-
ures 1 through 4. It can be seen from Figure 1 that fea-
tures may be stored for overall instances, called data 
sets, which may or may not have sub-sections. This can 
correspond to a recording and its windows, for example. 
Each sub-section has its own features, and each data set 
may have overall features as well. Each sub-section may 
have start and stop stamps in order to indicate what por-
tion of the data set it corresponds to. This makes it pos-
sible to have windows of arbitrary and varying sizes that   

 
<!ELEMENT feature_vector_file (comments,  
                               data_set+)> 
<!ELEMENT comments (#PCDATA)> 
<!ELEMENT data_set (data_set_id, 

                  section*, 
                  feature*)> 

<!ELEMENT data_set_id (#PCDATA)> 
<!ELEMENT section (feature+)> 
<!ATTLIST section start CDATA "" 

                stop CDATA ""> 
<!ELEMENT feature (name, v+)> 
<!ELEMENT name (#PCDATA)> 
<!ELEMENT v (#PCDATA)> 

Figure 1. XML DTD of the ACE XML file for-
mat for storing feature values. 

 
<!ELEMENT classifications_file(comments, 
                               data_set+)> 
<!ELEMENT comments (#PCDATA)> 
<!ELEMENT data_set (data_set_id, 
                  misc_info*, 
                  role?, 
                  classification)> 
<!ELEMENT data_set_id (#PCDATA)> 
<!ELEMENT misc_info (#PCDATA)> 
<!ATTLIST misc_info info_type CDATA ""> 
<!ELEMENT role (#PCDATA)> 
<!ELEMENT classification (section*, 
                        class*)> 
<!ELEMENT section (start, 
                 stop, 
                 class+)> 
<!ELEMENT class (#PCDATA)> 
<!ELEMENT start (#PCDATA)> 
<!ELEMENT stop (#PCDATA)> 

Figure 2. XML DTD of the proposed ACE XML 
file format for storing classifications. 

 
<!ELEMENT taxonomy_file (comments, 
                         parent_class+)> 
<!ELEMENT comments (#PCDATA)> 
<!ELEMENT parent_class (class_name, 
                        sub_class*)> 
<!ELEMENT class_name (#PCDATA)> 
<!ELEMENT sub_class (class_name,  
                     sub_class*)> 

Figure 3. XML DTD of the optional ACE XML 
file format for storing class taxonomies.  

 
<!ELEMENT feature_key_file (comments, 
                            feature+)> 
<!ELEMENT comments (#PCDATA)> 
<!ELEMENT feature (name, 
                   description?,  
                   is_sequential, 
                   parallel_dimensions)> 
<!ELEMENT name (#PCDATA)> 
<!ELEMENT description (#PCDATA)> 
<!ELEMENT is_sequential (#PCDATA)> 
<!ELEMENT parallel_dimensions (#PCDATA)> 

Figure 4. XML DTD of the optional ACE XML 
file format for storing feature definitions. 

can overlap. Each feature has a name identifying it, 
which makes it possible to omit features from some data 
sets or sub-sections if appropriate. Each feature may also 
have one or more values (denoted by the <v> element) in 
order to permit multi-dimensional features. 
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Figure 2 shows the DTD for storing model classifica-
tions. This format may also be used to output classifica-
tion results. Each data set may have optional metadata 
associated with it. Each data set can be broken into po-
tentially overlapping sub-sections if desired, and each 
sub-section can be assigned one or more classes. Each 
data set may be assigned one or more overall classes as 
well. Each sub-section is given start and stop stamps to 
show the region of influence of particular classes. 

The DTD for the optional taxonomy format is shown 
in Figure 3. This format allows the representation of 
hierarchically structured taxonomies of arbitrary depth. 

The final optional file format, for storing feature defi-
nitions, is shown in Figure 4. This format enables one to 
store the name of each possible feature, a description of 
it, whether or not it can be applied to sub-sections or to 
overall data sets only and how many dimensions it has. 

3 CLASSIFIER ENSEMBLES 

3.1 Motivation for using classifier ensembles 

As noted in Section 1, many MIR researchers have per-
formed experiments with multiple classifiers to see which 
are best suited to particular tasks, but few have attempted 
to combine these classifiers into ensembles. This section 
provides justification for doing so. 

The practice of combining classifiers into ensembles 
is inspired by the notion that the combined opinions of a 
number of experts is more likely to be correct than that 
of a single expert. Ideally, an ensemble will perform 
better than any of its individual component classifiers. 
Although this will often be the case, it is not necessarily 
guaranteed.  

One might question whether it is worth the increases 
in computational demands and implementation complex-
ity that often accompany ensemble classification if one 
is not guaranteed an increase in performance. Dietterich 
(2000) has proposed three reasons why classifier ensem-
bles can be beneficial. 

The first reason, referred to by Dietterich as the sta-
tistical reason, is as follows. Suppose one has a number 
of trained classifiers. One knows how well they each 
performed on the training, testing and potentially the 
validation data, but this is only an estimate of how well 
they will each generalize to the universe of all possible 
inputs. If all of the classifiers performed similarly on the 
testing and validation data, there is no way of knowing 
which is in fact the best classifier. If one chooses a sin-
gle classifier, one runs the risk of accidentally choosing 
one of the poorer ones. The statistical argument is par-
ticularly strong in cases where only limited training and 
testing data is available, as the evaluation of individual 
classifiers using test sets is likely to have a high error. 

The second reason, referred to as the computational 
reason, applies to classifiers that train using hill-
climbing or random search techniques. Training multiple 
neural networks, for example, on the same training data 
can very well result in significantly different trained 

classifiers, depending on the randomly generated initial 
conditions. Aggregating such classifiers into an ensem-
ble can take advantage of the multiplicity of solutions 
offered by the different classifiers. The computational 
argument highlights the particular appropriateness of 
instable classifiers for ensemble classification, as they 
can lead to a variety of useful solutions using only 
slightly modified training data. 

The final reason, termed referential, is based on the 
fact that there is no guarantee that the types of classifiers 
that one is using for a particular problem could ever 
converge to a theoretically optimal solution. To provide 
a simplified example, say a researcher mistakenly be-
lieves that a given problem is linear, and decides to use 
only linear classifiers. In reality, the optimal classifier 
will be non-linear, so it is not possible that any of the 
linear classifiers under consideration could perform op-
timally individually. However, an ensemble of linear 
classifiers could approximate a non-linear decision 
boundary, and could therefore potentially perform better 
than any single linear classifier ever could.  

An essential element in the effectiveness of classifier 
ensembles is their diversity. If all of the classifiers in an 
ensemble tend to misclassify the same instances, then 
combining their results will have little benefit. In con-
trast, a greater amount of independence between the 
classifiers can result in errors by individual classifiers 
being overlooked when the results of the ensemble are 
combined. Many of the most successful ensemble tech-
niques, such as bagging and boosting (see Section 3.2), 
are based on increasing classifier diversity. 

The well-known effectiveness of algorithms such as 
AdaBoost (Freund and Shapire 1996) provide convinc-
ing experimental evidence for the efficacy of classifier 
ensembles. It is therefore not surprising that many influ-
ential researchers, such as Josef Kittler (2000), continue 
to emphasize their value.  

3.2 Overview of classifier ensemble techniques 

Although an in-depth survey of ensemble classification is 
beyond the scope of the paper, a brief overview is pre-
sented here in order to promote the use of classifier en-
sembles in the MIR community. Kuncheva’s book 
(2004) is an excellent resource for those looking for 
more information.  

Methods for combining classifiers into ensembles are 
often divided among two groups. The first, classifier 
fusion, involves merging the results of all classifiers 
through a method such as voting. The second, classifier 
selection, involves using some system to dynamically 
select which specialist classifiers to use for each particu-
lar input pattern. The mixture of experts method, also 
called stacking, is an example of a hybrid method where 
a classifier is trained to weight the votes of other classi-
fiers in the ensemble. 

The way in which features and training data are di-
vided up among the component classifiers can play an 
important role in the success or failure of ensembles. 
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Bagging and boosting are two powerful techniques that 
make use of this fact in order to attempt to maximize 
diversity and, correspondingly, ensemble effectiveness. 

Bagging involves using bootstrapping to train the 
classifiers. This means that each classifier acquires a 
training set by sampling all available training instances 
with replacement. 

Boosting involves iteratively training classifiers so 
that the instances that previous classifiers performed 
poorly on are emphasized in the training sets for subse-
quent classifiers. The AdaBoost approach, of which 
there are now many variants, is particularly well known 
for its success. Boosting tends to perform better than 
bagging given enough training data, but bagging is better 
with smaller training sets. 

4 ACE 
The ACE system is designed with the dual goals of in-
creasing classification success rates and facilitating the 
process of classification for users of all skill levels. 

ACE is implemented in Java using the Weka frame-
work. As discussed in Section 2, Weka is powerful, 
flexible and well designed, but it has some limitations 
with respect to MIR research needs. A key aspect of 
ACE is that it adapts Weka to meet these needs, includ-
ing multi-class membership, hierarchical taxonomies, 
multi-dimensional features, instance sub-sections, etc. 

One of the most important ways in which this is done 
is through the implementation of the ACE XML file 
formats, presented in Section 2.2. Although conversion 
utilities are included to convert between ACE XML and 
Weka’s ARFF format, arguably the current de facto 
standard in MIR, the use of ACE XML is encouraged 
because of its superior expressive power. 

ACE’s use of Weka makes it possible to take advan-
tage of Weka’s many classification tools. These include 
classifiers such as feedforward neural nets, support vec-
tor machines, nearest neighbour classifiers, decision tree 
classifiers and Bayesian classifiers, to name just a few. 
A variety of dimensionality reduction tools are also 
available, such as principle component analysis and fea-
ture selection through genetic algorithms, exhaustive 
comparisons and best first searches. Finally, a number of 
classifier combination techniques are available, includ-
ing AdaBoost, bagging, majority voting and stacking. 

One of the main features of ACE is that it automati-
cally performs experiments with these approaches and 
their various parameters in order to find those that are 
well suited to each problem’s particular needs. Different 
approaches often involve tradeoffs between classifica-
tion success rates and processing times, and functional-
ity is being built into ACE to make it possible to meet 
the needs of particular problems by allowing users to set 
training or testing time constraints. 

Functionality is also being built into ACE that allows 
users to specify limits on how long the system has to 
arrive at a solution, with the result that ACE will initially 
pursue the most promising approaches, based on past 

experiments with similar data, and output the best ap-
proaches that it has found in the given time. This is ac-
complished by having ACE monitor its own perform-
ance. 

ACE’s incorporation of classifier ensembles has the 
potential to bring significantly improved classification 
rates to MIR research. Of course, it may be true in some 
cases that a pattern recognition expert could recommend 
a specialized solution to a given problem that is as good 
or better than one found experimentally by ACE. ACE is 
not intended to replace such experts, but rather to auto-
matically provide good solutions relatively quickly and 
effortlessly to users with diverse skill levels. 

ACE allows those with only a peripheral background 
in pattern recognition to easily perform high-quality 
classifications using a variety of methods. This is impor-
tant, as pattern recognition experts rarely have special-
ized knowledge in applied fields such as music, and ex-
perts in applied fields rarely have expertise in pattern 
recognition. ACE makes sophisticated pattern recogni-
tion accessible to all MIR researchers. ACE also pro-
vides an excellent tool for those with more pattern rec-
ognition experience who wish to perform benchmarking 
comparisons of new approaches. 

Much like Weka itself, ACE includes several inter-
faces for users with different needs. The first way to use 
ACE is through a GUI that allows users to build tax-
onomies, label and manage training and testing in-
stances, manage features, control classifier settings, 
carry out comparisons of classification methodologies, 
train and use classifiers and view results of experiments 
and classifications. 

The second way of using ACE is through a simple 
command-line interface. This interface is useful for us-
ers who already have the appropriate configuration files 
set up and would like a quick and easy method of per-
forming tasks such as batch processing. 

The final way of using ACE is for users to directly 
access the ACE Java classes from their own software. 
ACE is entirely open source, is well documented and is 
implemented in an intuitive manner.  

5 FEATURE EXTRACTION 
Feature extraction is a key part of any classification task. 
ACE is therefore packaged with two feature extraction 
applications, jAudio and jSymbolic, for extracting fea-
tures from audio and symbolic recordings respectively. 
These feature extractors are powerful, flexible and, most 
importantly, extensible. They are designed with the same 
portability and ease of use of the ACE system itself. 
They have also been designed with an emphasis on the 
importance of the logical separation of feature extractors 
and classifiers, and could easily be used with classifica-
tion frameworks other than ACE. 

Similarly, ACE is designed to work with arbitrary ex-
isting feature extraction systems that can produce ARFF 
or, preferably, ACE XML files. Users are free to use 
whatever feature extraction software they wish, and they 
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may take advantage of ACE’s portability to install ACE 
on whatever platform their feature extraction software 
already runs on. jAudio and jSymbolic are provided for 
users who do not already have feature extraction soft-
ware or who are interested in trying powerful new tools.  

jSymbolic is based on the Bodhidharma symbolic fea-
ture library (McKay 2004), the most extensive such li-
brary currently available. McEnnis et al. (2005) have 
published further information on jAudio. 

6 DISTRIBUTING THE WORKLOAD 
Classification techniques can be computationally inten-
sive, especially when many features are used or there are 
large training sets. This issue is amplified when multiple 
classifiers are used. Functionality is therefore being built 
into ACE to allow it run trials on multiple computers in 
parallel in order to achieve efficient and effective reduc-
tions in execution time.  

Two distributed computing systems are currently be-
ing considered for use, namely Grid Weka (Khoussainov 
et al. 2004) and M2K/D2K. Grid Weka has the advan-
tage of being built directly on Weka. D2K is a powerful 
and well-established environment, and M2K holds great 
promise, but there is the drawback that D2K has certain 
licensing issues, as discussed in Section 2.1. 

Both Grid Weka and M2K/D2K allow computation to 
be distributed among either multi-purpose workstations 
or dedicated machines, and both are compatible with a 
range of hardware and operating system configurations. 
ACE’s parallel capabilities could thus be exploited by 
anyone with access to a typical computing lab. 

Once the distributed aspect of the system is complete, 
a server-based sub-system will be designed that contains 
a coordination system and database. Although not neces-
sary for using ACE, users may choose to dedicate a 
computer to this server, allowing ACE to run perpetu-
ally. The server will keep a record of performances of all 
ACE operations run on a particular user’s cluster and 
generate statistics for self-evaluation and improvement. 
ACE will then make use of any idle time to attempt to 
improve solutions to previously encountered but cur-
rently inactive problems. 

7 BENCHMARK TESTING 
Two groups of tests were performed to verify ACE’s 
effectiveness. The first group consisted of two MIR-
related tasks, namely a beat-box recognition experiment 
and a reproduction of a previous seven-class percussion 
identification experiment (Tindale et al. 2004). ACE 
achieved a classification success rate of 95.6% with the 
five-class beat-box experiment using AdaBoost. Tin-
dale’s best success rate of 94.9% was improved to 96.3% 
by ACE, a reduction in error rate of 27.5%.  

The second set of tests involved running ACE on ten 
UCI datasets (Blake and Merz 1998) from a variety of 
research domains. The results are shown in Table 1: 

Table 1. ACE’s classification success rate on ten 
UCI datasets using ten-fold cross-validation com-
pared to a published baseline (Kotsiantis and Pin-
telas 2004). 

Data Set ACE’s 
Selected   

Classifier 

Kotsiantis  
Success 

Rate 

ACE 
Success  

Rate 

anneal AdaBoost -- 99.6% 

audiology AdaBoost -- 85.0% 

autos AdaBoost 81.7% 86.3% 

balance 
scale 

Naïve Bayes -- 91.4% 

diabetes Naïve Bayes 76.6% 78.0% 

ionosphere AdaBoost 90.7% 94.3% 

iris FF Neural Net 95.6% 97.3% 

labor k-NN 93.4% 93.0% 

vote Decision Tree 96.2% 96.3% 

zoo Decision Tree -- 97.0% 
 
It can be seen that ACE performed very well, particu-

larly given the difficulty of some of these data sets.  This 
is emphasized by ACE’s excellent performance relative 
to a recently published algorithm, which was itself 
shown to be better than a wide variety of alternative al-
gorithms (Kotsiantis and Pintelas 2004). Although statis-
tical uncertainty makes it impossible to claim that ACE’s 
results are inherently superior, it does show that ACE 
can certainly achieve results probably as good as or bet-
ter than sophisticated state-of-the-art algorithms. 

What is particularly impressive is that ACE was 
forced to restrict each of its learning schemes to one 
minute or less for both training and testing on a typical 
PC (2.8 GHz P4). This was done in order to investigate 
ACE’s ability to rapidly evaluate a wide variety of clas-
sifiers. Although even higher success rates could likely 
have been achieved with more training time, the per-
formance achieved by ACE in this limited time demon-
strates its efficiency in exploratory research. 

Table 1 is also revealing in that it demonstrates that a 
variety of classifiers will perform best given a variety of 
data sets. Furthermore, AdaBoost was selected by ACE 
4 times out of 10, demonstrating the efficacy of ensem-
ble classification. These results support the appropriate-
ness of ACE’s experimental approach as well as its utili-
zation of ensemble classification. 

The demonstrated effectiveness of ACE with respect 
to both musical and general data is particularly encour-
aging given that there are still many pattern recognition 
schemes to be incorporated into ACE and that the use of 
distributed computing in the future will make the alloca-
tion of increased training times justifiable.  
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8 CONCLUSIONS 
The goals of ACE and this paper can be summarized as 
follows: 

• Highlight the limitations of traditional pattern recogni-
tion software when applied to MIR and propose and 
implement a number of solutions. 

• Encourage experimentation with classifier ensembles in 
the MIR community. 

• Provide portable classification software as well as 
MIDI and audio feature extraction software that em-
phasize extensibility, ease of use and effectiveness. 

• Provide software that allows users to automatically 
perform experiments with various classifiers, classifier 
parameters, data reduction techniques, ensemble archi-
tectures and ensemble parameters in order to find ap-
proaches well suited to particular problems.  

9 FUTURE RESEARCH 
Aside from the plans to incorporate distributed process-
ing into ACE, as discussed in Section 6, there are a num-
ber of other future improvements planned. These include 
the implementation of learning schemes important to 
MIR that are currently missing from Weka, such as hid-
den Markov models. The inclusion of classifiers with 
memory (e.g., neural networks with feedback) is also an 
important area for expansion, as these can play an impor-
tant role in music research. 

There are also plans to implement modules for facili-
tating post-processing. The implementation of a tool for 
generating model classification files is another priority. 

An additional goal is to strengthen ACE’s support of 
Weka’s unsupervised learning functionality. It would 
also be beneficial to include tools for constructing black-
board systems, in particular ones that integrate knowl-
edge sources based on heuristics. This would comple-
ment ACE’s machine learning approach nicely. 
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