

ACE: A FRAMEWORK FOR OPTIMIZING MUSIC CLASSIFICATION

Cory McKay Rebecca Fiebrink Daniel McEnnis Beinan Li Ichiro Fujinaga
Music Technology
McGill University
Montreal, Canada
cory.mckay@

mail.mcgill.ca

Music Technology
McGill University
Montreal, Canada
rfiebrink@
acm.org

Music Technology
McGill University
Montreal, Canada
daniel.mcennis@
mail.mcgill.ca

Music Technology
McGill University
Montreal, Canada
beinan.li@

mail.mcgill.ca

Music Technology
McGill University
Montreal, Canada

ich@
music.mcgill.ca

ABSTRACT
This paper presents ACE (Autonomous Classification
Engine), a framework for using and optimizing classifi-
ers. Given a set of feature vectors, ACE experiments with
a variety of classifiers, classifier parameters, classifier
ensembles and dimensionality reduction techniques in
order to arrive at a good configuration for the problem at
hand. In addition to evaluating classification methodolo-
gies in terms of success rates, functionality is also being
incorporated into ACE allowing users to specify con-
straints on training and classification times as well as on
the amount of time that ACE has to arrive at a solution.

ACE is designed to facilitate classification for those
new to pattern recognition as well as provide flexibility
for those with more experience. ACE is packaged with
audio and MIDI feature extraction software, although it
can certainly be used with existing feature extractors.

This paper includes a discussion of ways in which ex-
isting general-purpose classification software can be
adapted to meet the needs of music researchers and
shows how these ideas have been implemented in ACE.
A standardized XML format for communicating features
and other information to classifiers is proposed.

A special emphasis is placed on the potential of clas-
sifier ensembles, which have remained largely untapped
by the MIR community to date. A brief theoretical dis-
cussion of ensemble classification is presented in order
to promote this powerful approach.

Keywords: music classification, classifier ensembles,
combining classifiers, optimization, MIR

1 INTRODUCTION
Classification techniques play an essential role in many
MIR-related research areas. These include genre classifi-
cation, similarity analysis, music recommendation, per-
former identification, composer identification and in-
strument identification, to name just a few. An examina-
tion of the MIREX evaluation topics clearly demon-
strates the importance of classification in MIR.

Despite this importance, there has been relatively lit-

tle work on developing standardized and easy-to-use
classification software with the particular needs of music
in mind. A survey of published MIR papers reveals that
many researchers either implement their own custom-
built systems or use off-the-shelf pattern recognition
software that was developed for fields other than music.

The former approach results in time wasted through
duplication of effort and, potentially, relatively limited
software, as one only has so much time to devote to
building classifiers if this is only a part of a larger re-
search project. Using general pattern recognition frame-
works can work well with some limited applications, but
one inevitably encounters complications, limitations and
difficulties due to the particularities of music.

Standardized classification software especially
adapted to MIR could therefore be of significant benefit.
Fortunately, some work has been done in this area. Mar-
syas (Tzanetakis and Cook 1999) in particular has been
used effectively by many researchers, and M2K (Downie
2004) has great promise. ACE (Autonomous Classifica-
tion Engine) is proposed here as a framework that builds
upon these important systems and addresses a number of
areas that remain to be dealt with.

Section 2 of this paper discusses the shortcomings of
general-purpose pattern recognition frameworks with
respect to music and proposes specific improvements. A
particular emphasis is put on the importance of a stan-
dardized method of transmitting features from feature
extractors to classification software. Several XML file
formats are proposed in order to address this issue.

Section 3 of this paper concentrates on grouping clas-
sifiers into ensembles. Many MIR researchers perform
experiments with a variety of classifiers in order to find
the ones that are best suited to their particular tasks.
Only a few experiments, such as the Bodhidharma genre
classification system (McKay 2004), however, have
been conducted on combining these classifiers into en-
sembles.

This is surprising, given the proven effectiveness of
ensemble algorithms such as AdaBoost (Freund and
Shapire 1996). Classifier ensembles have been gaining
increasing attention in the machine learning and pattern
recognition communities over the past decade, and the
MIR community could certainly benefit from experi-
menting with the wide variety of potentially very power-
ful approaches that are available. This is particularly
true considering the asymptotic behaviour that success
rates appear to be demonstrating in a variety of MIR
areas, as observed by Aucouturier and Pachet (2004).

Of course, classifier ensembles do come at the cost of
added complexity, and the variety of approaches avail-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

© 2005 Queen Mary, University of London

42

able can be daunting. Section 3 of this paper presents a
brief survey of the field in order to encourage experi-
mentation with classifier ensembles in MIR research.

Even when only one classifier is used, the variety and
sophistication of classification techniques can make it
difficult to decide which techniques and parameters to
use. Even the most experienced pattern recognition re-
searchers must often resort to experimentation. The ACE
framework has been designed to deal with this problem
automatically. ACE performs optimization experiments
using different dimensionality reduction techniques,
classifiers, classifier parameters and classifier ensemble
architectures. Particular efforts have been made to inves-
tigate the power of feature weighting (Fiebrink, McKay,
and Fujinaga 2005).

Functionality is also being built into ACE that allows
it to analyze the effectiveness of different approaches
not only in terms of classification accuracy, but also
training time and classification time. This allows users to
experimentally determine the best set of techniques to
use for their particular priorities.

ACE may also be used directly as a classifier. Once
users have selected the classifier(s) that they wish to use,
whether through ACE optimization or using pre-existing
knowledge, they need only provide ACE with feature
vectors and model classifications. ACE then trains itself
and presents users with trained classifier(s).

An important advantage of ACE is that it is open-
source and freely distributable. ACE is implemented in
Java, which means that the framework is portable and
easy to install. ACE has also been built with a modular
and extensible design philosophy. It is a simple and
well-documented matter for users to build upon ACE.

Section 4 of this paper presents the ACE framework
itself. The implementation and functionality of the soft-
ware are discussed, as are the benefits that it offers the
MIR community.

Any classification system is only as good as the fea-
tures that it receives. ACE is packaged with easy-to-use,
flexible and, perhaps most importantly, highly extensible
feature extraction software for extracting features from
both audio and MIDI files. There is no requirement to
use ACE with these feature extractors, however, as ACE
is designed to work well with any feature extractors that
can generate appropriately formatted output. Section 5
presents a brief overview of the bundled feature extrac-
tion software.

Both feature extraction and classification can be com-
putationally intensive. This is particularly true of a sys-
tem such as ACE, given its exploratory approach. Sec-
tion 6 details future plans for adapting ACE so that it
can distribute its workload over multiple computers.

Section 7 shows the results of several test classifica-
tion tasks performed with ACE in order to evaluate its
effectiveness. These include tests on standard bench-
marks from the UCI Machine Learning Repository as
well as two MIR-specific tasks.

Section 8 summarizes this paper and Section 9 pre-
sents some ideas for future additions to ACE.

2 DEVELOPING A CLASSIFICATION
FRAMEWORK SUITED TO MIR

2.1 Limitations of existing systems

The development of a general pattern recognition soft-
ware package is not trivial. Each application domain has
its own needs and peculiarities that might not occur to
researchers in other fields. It is therefore no surprise that
what general pattern recognition frameworks are avail-
able have important weaknesses with respect to MIR.

In general, it appears that PRTools (van der Heijden
et al. 2004) and Weka (Witten and Frank 2000) are the
two most often used general frameworks in MIR.
PRTools is a Matlab toolbox and Weka is a Java appli-
cation and code library. Both of these frameworks are
very well-designed and powerful tools, but they do have
several limitations when applied to MIR.

PRTools has the disadvantage that it is reliant upon
Matlab, a proprietary software package. Although
PRTools itself is free for academic use, one must still
purchase Matlab in order to use it. Furthermore, one
must pay for PRTools if one wishes to use it commer-
cially, and its licence does not permit it to be redistrib-
uted. This means that any software that is developed
using PRTools cannot be distributed without special
permission, and it cannot be distributed with an open
licence. So, although PRTools is certainly suitable for
basic research and prototyping, it is problematic with
respect to serious application development.

This introduces some of the important concerns with
respect to MIR software. The general consensus in the
MIR community appears to be supportive of free, open
source and fully distributable software. This is important
in ensuring research transparency and sharing of results,
and it is essential in allowing researchers to build upon
each other’s work.

Related to this is the importance of extensibility and
modularity. In an open research community, not only
should code be freely distributable, but it must be de-
signed so that others can expand upon it easily.

Portability, documentation and ease of use and instal-
lation are also important considerations. Although lip
service is often paid to these principles, they should be
taken very seriously. It is not at all an uncommon ex-
perience for potential users to become discouraged by
installation difficulties, such as linking errors, or by ar-
cane code documentation.

Furthermore, good MIR software should be usable
and understandable by users with a variety of skill lev-
els. The MIR community is composed of experts in a
wide variety of fields, and it is not reasonable to expect
all of them to be highly knowledgeable about classifica-
tion, even though it might be of benefit to their research.

The Weka data mining framework largely meets these
requirements. It is freely distributable, open source, rela-
tively well documented, implemented with all of Java’s
platform-independence, beautifully designed and truly a
pleasure to work with. It also includes a variety of inter-

43

faces for users with different needs and abilities. It is,
however, as is inevitable with any general system, miss-
ing some important qualities with respect to MIR.

The most significant issues are related to the Weka
ARFF file format that is used to store features and com-
municate them to classifiers. To begin with, there is no
good way to assign more than one class to a given in-
stance. One possible solution is to break one multi-class
problem into many binary classification problems, so
that there is a separate ARFF file for every class, with all
instances classified as either belonging or not belonging
to each class. Alternatively, one could create a separate
class for every possible combination of classes, with a
resulting exponential increase in the numbers of classes.

It is clear that neither of these solutions is ideal. Un-
fortunately, this is a problem with classification systems
in general, not just Weka. This is understandable, as
most pattern recognition tasks require classification into
one and only one class. Unfortunately, a great deal of
musicological research involves certain unavoidable
ambiguities, and the imposition of only one class mem-
bership on each instance is unrealistic for tasks such as
genre classification and many types of similarity-related
classification, for example.

A second problem is that ARFF files do not permit
any logical grouping of features. Each feature is treated
as an independent quantity with no relation to any other
feature. One often encounters multi-dimensional features
in music, and it can be useful to maintain some logical
relationship between the components of such features.
Power spectra, MFCC’s, bins of a beat histogram and
instruments present are just a few examples. Maintaining
a logical relationship between the values of multi-
dimensional features allows one to perform classifica-
tions in particularly fruitful ways that take advantage of
their interrelatedness, particularly with respect to classi-
fier ensembles. Training one neural net on MFCC’s, for
example, and using another classifier for features such as
RMS or spectral centroid could prove much more fruit-
ful than mixing the MFCC’s in with the other features.

A third problem is that ARFF files do not allow any
labelling or structuring of instances. Each instance is
stored only as a collection of feature values and a class
identifier, with no identifying metadata. In music, it is
often appropriate to extract features over a number of
windows. Furthermore, some features may be extracted
for each window, some only for some windows and
some only for a recording as a whole. Weka and its
ARFF files provide no way of associating the features of
a window with the recording that it comes from, nor do
they provide any means of identifying recordings or of
storing time stamps associated with each window. This
means that this information must be stored, organized
and processed by some external software using some
unspecified and non-standardized file format.

A fourth problem is that there is no way of imposing
a structure on the class labels. One often encounters hi-
erarchical structures in music, such as in the cases of
genre categories or structural analyses. Weka treats each

class as distinct and independent. This means that there
is no native way to use classification techniques that
make use of structured taxonomies.

These criticisms are not meant to denigrate Weka in
any way. Quite to the contrary, in fact, as Weka is sin-
gled out here only because it is arguably the best frame-
work available. One of the many positive aspects of
Weka is that it is easy to write Java code that makes use
of the excellent existing Weka code and adds functional-
ity to it, which is precisely what ACE does.

Many of the issues discussed above apply to existing
systems developed specifically with music in mind as
well. As mentioned in Section 1, the two most well-
known and powerful such systems are Marsyas and
M2K.

Marsyas is a pioneering system that has been used
very effectively in a number of research projects. Unfor-
tunately, there can be some portability and installation
issues with this C++ based system. Marsysas is also cur-
rently centred around audio classification, and does not
currently include MIDI functionality.

It is also unfair to compare Marsyas to general classi-
fication systems such as Weka, as Marsyas was origi-
nally designed primarily as a feature extractor, and per-
forms very well at this task. Marsyas is, however, regu-
larly maintained by its creator, George Tzanetakis, and
there are plans to extend its functionality and possibly
port increasing amounts of Weka’s functionality to it.

M2K is a graphical feature extraction and classifica-
tion framework based on the D2K parallel data mining
and machine learning system. Although still in alpha
release, and therefore impossible to fairly evaluate, M2K
promises to be an extremely powerful and flexible sys-
tem for MIR prototyping.

Unfortunately, M2K does inherit several licensing
problems from D2K that potentially limit its use beyond
prototyping. D2K’s licence can make it complicated for
researchers outside the U.S.A. to obtain it, and forbids
its use in commercial applications. This means that any
system that uses D2K cannot itself be used for any non-
research-based tasks. Furthermore, D2K is not open
source.

2.2 Feature file formats

It is clear from Section 2.1 that there is an important
need for a standardized and flexible file format for stor-
ing feature values and communicating them to classifiers.
Existing formats such as ARFF, while certainly suitable
for the types of tasks their designers had in mind, are
insufficient for the particular needs of MIR researchers.

Several XML-based file formats are presented here in
order to attempt to meet this need. XML is chosen be-
cause it is not only a standardized format for which
parsers are widely available, but is also extremely flexi-
ble. It is a verbose format, with the result that it is less
space efficient than formats such as ARFF, but this ver-
bosity has the corresponding advantage that it allows
humans to easily read the files. This is particularly use-

44

ful when one is working on debugging feature extrac-
tors.

An important priority when developing a feature file
format is to enforce a clear separation between the fea-
ture extraction and classification tasks, as particular re-
searchers may have reasons for using particular feature
extractors or particular classification systems. The file
format should therefore make it possible to use any fea-
ture extractor to communicate any features of any type
to any classification system. This portability makes it
possible to use features generated with different extrac-
tors with the same classification system, or a given set of
extracted features with multiple classification systems.

The reusability of files is another important consid-
eration. For example, it could be useful to use the same
set of extracted features for a variety of tasks, such as
genre classification as well as artist identification. Simi-
larly, it could be convenient to reuse the same model
classifications with different sets of features. For exam-
ple, one could classify a given corpus of audio re-
cordings and then later perform the same task on sym-
bolic recordings of the same corpus using the same
model classifications. Unfortunately, most current fea-
ture file formats merge feature values and model classi-
fications, making this kind of reusability difficult.

The use of two separate files is therefore proposed for
what is traditionally contained in one file, namely one
file for storing feature values and another for storing
model classifications. Unique keys such as file names
can be used to merge the two files. The model classifica-
tion file can be omitted when using unsupervised learn-
ing or classifying unknown patterns.

We also propose the use of an additional optional file
for specifying taxonomical structures. This enables one
to specify the relationships between classes, information
which can be very useful for tasks such as hierarchical
classification. This file can be omitted if only flat classi-
fication is to be used.

One final optional file format is proposed for storing
metadata about features, such as basic descriptions or
details about the cardinality of multi-dimensional fea-
tures. Although not strictly necessary, such a file helps
solidify the potential for full independence between fea-
ture extractors and classifiers. A researcher with a classi-
fier could be e-mailed a feature values file and a feature
definitions file by other researchers, for example, and
would need no additional information at all about the
feature extractor used or the features it extracted.

The explicit Document Type Definitions (DTD’s) of
the four proposed ACE XML formats are shown in Fig-
ures 1 through 4. It can be seen from Figure 1 that fea-
tures may be stored for overall instances, called data
sets, which may or may not have sub-sections. This can
correspond to a recording and its windows, for example.
Each sub-section has its own features, and each data set
may have overall features as well. Each sub-section may
have start and stop stamps in order to indicate what por-
tion of the data set it corresponds to. This makes it pos-
sible to have windows of arbitrary and varying sizes that

<!ELEMENT feature_vector_file (comments,
 data_set+)>
<!ELEMENT comments (#PCDATA)>
<!ELEMENT data_set (data_set_id,

 section*,
 feature*)>

<!ELEMENT data_set_id (#PCDATA)>
<!ELEMENT section (feature+)>
<!ATTLIST section start CDATA ""

 stop CDATA "">
<!ELEMENT feature (name, v+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT v (#PCDATA)>

Figure 1. XML DTD of the ACE XML file for-
mat for storing feature values.

<!ELEMENT classifications_file(comments,
 data_set+)>
<!ELEMENT comments (#PCDATA)>
<!ELEMENT data_set (data_set_id,
 misc_info*,
 role?,
 classification)>
<!ELEMENT data_set_id (#PCDATA)>
<!ELEMENT misc_info (#PCDATA)>
<!ATTLIST misc_info info_type CDATA "">
<!ELEMENT role (#PCDATA)>
<!ELEMENT classification (section*,
 class*)>
<!ELEMENT section (start,
 stop,
 class+)>
<!ELEMENT class (#PCDATA)>
<!ELEMENT start (#PCDATA)>
<!ELEMENT stop (#PCDATA)>

Figure 2. XML DTD of the proposed ACE XML
file format for storing classifications.

<!ELEMENT taxonomy_file (comments,
 parent_class+)>
<!ELEMENT comments (#PCDATA)>
<!ELEMENT parent_class (class_name,
 sub_class*)>
<!ELEMENT class_name (#PCDATA)>
<!ELEMENT sub_class (class_name,
 sub_class*)>

Figure 3. XML DTD of the optional ACE XML
file format for storing class taxonomies.

<!ELEMENT feature_key_file (comments,
 feature+)>
<!ELEMENT comments (#PCDATA)>
<!ELEMENT feature (name,
 description?,
 is_sequential,
 parallel_dimensions)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT is_sequential (#PCDATA)>
<!ELEMENT parallel_dimensions (#PCDATA)>

Figure 4. XML DTD of the optional ACE XML
file format for storing feature definitions.

can overlap. Each feature has a name identifying it,
which makes it possible to omit features from some data
sets or sub-sections if appropriate. Each feature may also
have one or more values (denoted by the <v> element) in
order to permit multi-dimensional features.

45

Figure 2 shows the DTD for storing model classifica-
tions. This format may also be used to output classifica-
tion results. Each data set may have optional metadata
associated with it. Each data set can be broken into po-
tentially overlapping sub-sections if desired, and each
sub-section can be assigned one or more classes. Each
data set may be assigned one or more overall classes as
well. Each sub-section is given start and stop stamps to
show the region of influence of particular classes.

The DTD for the optional taxonomy format is shown
in Figure 3. This format allows the representation of
hierarchically structured taxonomies of arbitrary depth.

The final optional file format, for storing feature defi-
nitions, is shown in Figure 4. This format enables one to
store the name of each possible feature, a description of
it, whether or not it can be applied to sub-sections or to
overall data sets only and how many dimensions it has.

3 CLASSIFIER ENSEMBLES

3.1 Motivation for using classifier ensembles

As noted in Section 1, many MIR researchers have per-
formed experiments with multiple classifiers to see which
are best suited to particular tasks, but few have attempted
to combine these classifiers into ensembles. This section
provides justification for doing so.

The practice of combining classifiers into ensembles
is inspired by the notion that the combined opinions of a
number of experts is more likely to be correct than that
of a single expert. Ideally, an ensemble will perform
better than any of its individual component classifiers.
Although this will often be the case, it is not necessarily
guaranteed.

One might question whether it is worth the increases
in computational demands and implementation complex-
ity that often accompany ensemble classification if one
is not guaranteed an increase in performance. Dietterich
(2000) has proposed three reasons why classifier ensem-
bles can be beneficial.

The first reason, referred to by Dietterich as the sta-
tistical reason, is as follows. Suppose one has a number
of trained classifiers. One knows how well they each
performed on the training, testing and potentially the
validation data, but this is only an estimate of how well
they will each generalize to the universe of all possible
inputs. If all of the classifiers performed similarly on the
testing and validation data, there is no way of knowing
which is in fact the best classifier. If one chooses a sin-
gle classifier, one runs the risk of accidentally choosing
one of the poorer ones. The statistical argument is par-
ticularly strong in cases where only limited training and
testing data is available, as the evaluation of individual
classifiers using test sets is likely to have a high error.

The second reason, referred to as the computational
reason, applies to classifiers that train using hill-
climbing or random search techniques. Training multiple
neural networks, for example, on the same training data
can very well result in significantly different trained

classifiers, depending on the randomly generated initial
conditions. Aggregating such classifiers into an ensem-
ble can take advantage of the multiplicity of solutions
offered by the different classifiers. The computational
argument highlights the particular appropriateness of
instable classifiers for ensemble classification, as they
can lead to a variety of useful solutions using only
slightly modified training data.

The final reason, termed referential, is based on the
fact that there is no guarantee that the types of classifiers
that one is using for a particular problem could ever
converge to a theoretically optimal solution. To provide
a simplified example, say a researcher mistakenly be-
lieves that a given problem is linear, and decides to use
only linear classifiers. In reality, the optimal classifier
will be non-linear, so it is not possible that any of the
linear classifiers under consideration could perform op-
timally individually. However, an ensemble of linear
classifiers could approximate a non-linear decision
boundary, and could therefore potentially perform better
than any single linear classifier ever could.

An essential element in the effectiveness of classifier
ensembles is their diversity. If all of the classifiers in an
ensemble tend to misclassify the same instances, then
combining their results will have little benefit. In con-
trast, a greater amount of independence between the
classifiers can result in errors by individual classifiers
being overlooked when the results of the ensemble are
combined. Many of the most successful ensemble tech-
niques, such as bagging and boosting (see Section 3.2),
are based on increasing classifier diversity.

The well-known effectiveness of algorithms such as
AdaBoost (Freund and Shapire 1996) provide convinc-
ing experimental evidence for the efficacy of classifier
ensembles. It is therefore not surprising that many influ-
ential researchers, such as Josef Kittler (2000), continue
to emphasize their value.

3.2 Overview of classifier ensemble techniques

Although an in-depth survey of ensemble classification is
beyond the scope of the paper, a brief overview is pre-
sented here in order to promote the use of classifier en-
sembles in the MIR community. Kuncheva’s book
(2004) is an excellent resource for those looking for
more information.

Methods for combining classifiers into ensembles are
often divided among two groups. The first, classifier
fusion, involves merging the results of all classifiers
through a method such as voting. The second, classifier
selection, involves using some system to dynamically
select which specialist classifiers to use for each particu-
lar input pattern. The mixture of experts method, also
called stacking, is an example of a hybrid method where
a classifier is trained to weight the votes of other classi-
fiers in the ensemble.

The way in which features and training data are di-
vided up among the component classifiers can play an
important role in the success or failure of ensembles.

46

Bagging and boosting are two powerful techniques that
make use of this fact in order to attempt to maximize
diversity and, correspondingly, ensemble effectiveness.

Bagging involves using bootstrapping to train the
classifiers. This means that each classifier acquires a
training set by sampling all available training instances
with replacement.

Boosting involves iteratively training classifiers so
that the instances that previous classifiers performed
poorly on are emphasized in the training sets for subse-
quent classifiers. The AdaBoost approach, of which
there are now many variants, is particularly well known
for its success. Boosting tends to perform better than
bagging given enough training data, but bagging is better
with smaller training sets.

4 ACE
The ACE system is designed with the dual goals of in-
creasing classification success rates and facilitating the
process of classification for users of all skill levels.

ACE is implemented in Java using the Weka frame-
work. As discussed in Section 2, Weka is powerful,
flexible and well designed, but it has some limitations
with respect to MIR research needs. A key aspect of
ACE is that it adapts Weka to meet these needs, includ-
ing multi-class membership, hierarchical taxonomies,
multi-dimensional features, instance sub-sections, etc.

One of the most important ways in which this is done
is through the implementation of the ACE XML file
formats, presented in Section 2.2. Although conversion
utilities are included to convert between ACE XML and
Weka’s ARFF format, arguably the current de facto
standard in MIR, the use of ACE XML is encouraged
because of its superior expressive power.

ACE’s use of Weka makes it possible to take advan-
tage of Weka’s many classification tools. These include
classifiers such as feedforward neural nets, support vec-
tor machines, nearest neighbour classifiers, decision tree
classifiers and Bayesian classifiers, to name just a few.
A variety of dimensionality reduction tools are also
available, such as principle component analysis and fea-
ture selection through genetic algorithms, exhaustive
comparisons and best first searches. Finally, a number of
classifier combination techniques are available, includ-
ing AdaBoost, bagging, majority voting and stacking.

One of the main features of ACE is that it automati-
cally performs experiments with these approaches and
their various parameters in order to find those that are
well suited to each problem’s particular needs. Different
approaches often involve tradeoffs between classifica-
tion success rates and processing times, and functional-
ity is being built into ACE to make it possible to meet
the needs of particular problems by allowing users to set
training or testing time constraints.

Functionality is also being built into ACE that allows
users to specify limits on how long the system has to
arrive at a solution, with the result that ACE will initially
pursue the most promising approaches, based on past

experiments with similar data, and output the best ap-
proaches that it has found in the given time. This is ac-
complished by having ACE monitor its own perform-
ance.

ACE’s incorporation of classifier ensembles has the
potential to bring significantly improved classification
rates to MIR research. Of course, it may be true in some
cases that a pattern recognition expert could recommend
a specialized solution to a given problem that is as good
or better than one found experimentally by ACE. ACE is
not intended to replace such experts, but rather to auto-
matically provide good solutions relatively quickly and
effortlessly to users with diverse skill levels.

ACE allows those with only a peripheral background
in pattern recognition to easily perform high-quality
classifications using a variety of methods. This is impor-
tant, as pattern recognition experts rarely have special-
ized knowledge in applied fields such as music, and ex-
perts in applied fields rarely have expertise in pattern
recognition. ACE makes sophisticated pattern recogni-
tion accessible to all MIR researchers. ACE also pro-
vides an excellent tool for those with more pattern rec-
ognition experience who wish to perform benchmarking
comparisons of new approaches.

Much like Weka itself, ACE includes several inter-
faces for users with different needs. The first way to use
ACE is through a GUI that allows users to build tax-
onomies, label and manage training and testing in-
stances, manage features, control classifier settings,
carry out comparisons of classification methodologies,
train and use classifiers and view results of experiments
and classifications.

The second way of using ACE is through a simple
command-line interface. This interface is useful for us-
ers who already have the appropriate configuration files
set up and would like a quick and easy method of per-
forming tasks such as batch processing.

The final way of using ACE is for users to directly
access the ACE Java classes from their own software.
ACE is entirely open source, is well documented and is
implemented in an intuitive manner.

5 FEATURE EXTRACTION
Feature extraction is a key part of any classification task.
ACE is therefore packaged with two feature extraction
applications, jAudio and jSymbolic, for extracting fea-
tures from audio and symbolic recordings respectively.
These feature extractors are powerful, flexible and, most
importantly, extensible. They are designed with the same
portability and ease of use of the ACE system itself.
They have also been designed with an emphasis on the
importance of the logical separation of feature extractors
and classifiers, and could easily be used with classifica-
tion frameworks other than ACE.

Similarly, ACE is designed to work with arbitrary ex-
isting feature extraction systems that can produce ARFF
or, preferably, ACE XML files. Users are free to use
whatever feature extraction software they wish, and they

47

may take advantage of ACE’s portability to install ACE
on whatever platform their feature extraction software
already runs on. jAudio and jSymbolic are provided for
users who do not already have feature extraction soft-
ware or who are interested in trying powerful new tools.

jSymbolic is based on the Bodhidharma symbolic fea-
ture library (McKay 2004), the most extensive such li-
brary currently available. McEnnis et al. (2005) have
published further information on jAudio.

6 DISTRIBUTING THE WORKLOAD
Classification techniques can be computationally inten-
sive, especially when many features are used or there are
large training sets. This issue is amplified when multiple
classifiers are used. Functionality is therefore being built
into ACE to allow it run trials on multiple computers in
parallel in order to achieve efficient and effective reduc-
tions in execution time.

Two distributed computing systems are currently be-
ing considered for use, namely Grid Weka (Khoussainov
et al. 2004) and M2K/D2K. Grid Weka has the advan-
tage of being built directly on Weka. D2K is a powerful
and well-established environment, and M2K holds great
promise, but there is the drawback that D2K has certain
licensing issues, as discussed in Section 2.1.

Both Grid Weka and M2K/D2K allow computation to
be distributed among either multi-purpose workstations
or dedicated machines, and both are compatible with a
range of hardware and operating system configurations.
ACE’s parallel capabilities could thus be exploited by
anyone with access to a typical computing lab.

Once the distributed aspect of the system is complete,
a server-based sub-system will be designed that contains
a coordination system and database. Although not neces-
sary for using ACE, users may choose to dedicate a
computer to this server, allowing ACE to run perpetu-
ally. The server will keep a record of performances of all
ACE operations run on a particular user’s cluster and
generate statistics for self-evaluation and improvement.
ACE will then make use of any idle time to attempt to
improve solutions to previously encountered but cur-
rently inactive problems.

7 BENCHMARK TESTING
Two groups of tests were performed to verify ACE’s
effectiveness. The first group consisted of two MIR-
related tasks, namely a beat-box recognition experiment
and a reproduction of a previous seven-class percussion
identification experiment (Tindale et al. 2004). ACE
achieved a classification success rate of 95.6% with the
five-class beat-box experiment using AdaBoost. Tin-
dale’s best success rate of 94.9% was improved to 96.3%
by ACE, a reduction in error rate of 27.5%.

The second set of tests involved running ACE on ten
UCI datasets (Blake and Merz 1998) from a variety of
research domains. The results are shown in Table 1:

Table 1. ACE’s classification success rate on ten
UCI datasets using ten-fold cross-validation com-
pared to a published baseline (Kotsiantis and Pin-
telas 2004).

Data Set ACE’s
Selected

Classifier

Kotsiantis
Success

Rate

ACE
Success

Rate

anneal AdaBoost -- 99.6%

audiology AdaBoost -- 85.0%

autos AdaBoost 81.7% 86.3%

balance
scale

Naïve Bayes -- 91.4%

diabetes Naïve Bayes 76.6% 78.0%

ionosphere AdaBoost 90.7% 94.3%

iris FF Neural Net 95.6% 97.3%

labor k-NN 93.4% 93.0%

vote Decision Tree 96.2% 96.3%

zoo Decision Tree -- 97.0%

It can be seen that ACE performed very well, particu-

larly given the difficulty of some of these data sets. This
is emphasized by ACE’s excellent performance relative
to a recently published algorithm, which was itself
shown to be better than a wide variety of alternative al-
gorithms (Kotsiantis and Pintelas 2004). Although statis-
tical uncertainty makes it impossible to claim that ACE’s
results are inherently superior, it does show that ACE
can certainly achieve results probably as good as or bet-
ter than sophisticated state-of-the-art algorithms.

What is particularly impressive is that ACE was
forced to restrict each of its learning schemes to one
minute or less for both training and testing on a typical
PC (2.8 GHz P4). This was done in order to investigate
ACE’s ability to rapidly evaluate a wide variety of clas-
sifiers. Although even higher success rates could likely
have been achieved with more training time, the per-
formance achieved by ACE in this limited time demon-
strates its efficiency in exploratory research.

Table 1 is also revealing in that it demonstrates that a
variety of classifiers will perform best given a variety of
data sets. Furthermore, AdaBoost was selected by ACE
4 times out of 10, demonstrating the efficacy of ensem-
ble classification. These results support the appropriate-
ness of ACE’s experimental approach as well as its utili-
zation of ensemble classification.

The demonstrated effectiveness of ACE with respect
to both musical and general data is particularly encour-
aging given that there are still many pattern recognition
schemes to be incorporated into ACE and that the use of
distributed computing in the future will make the alloca-
tion of increased training times justifiable.

48

8 CONCLUSIONS
The goals of ACE and this paper can be summarized as
follows:

• Highlight the limitations of traditional pattern recogni-
tion software when applied to MIR and propose and
implement a number of solutions.

• Encourage experimentation with classifier ensembles in
the MIR community.

• Provide portable classification software as well as
MIDI and audio feature extraction software that em-
phasize extensibility, ease of use and effectiveness.

• Provide software that allows users to automatically
perform experiments with various classifiers, classifier
parameters, data reduction techniques, ensemble archi-
tectures and ensemble parameters in order to find ap-
proaches well suited to particular problems.

9 FUTURE RESEARCH
Aside from the plans to incorporate distributed process-
ing into ACE, as discussed in Section 6, there are a num-
ber of other future improvements planned. These include
the implementation of learning schemes important to
MIR that are currently missing from Weka, such as hid-
den Markov models. The inclusion of classifiers with
memory (e.g., neural networks with feedback) is also an
important area for expansion, as these can play an impor-
tant role in music research.

There are also plans to implement modules for facili-
tating post-processing. The implementation of a tool for
generating model classification files is another priority.

An additional goal is to strengthen ACE’s support of
Weka’s unsupervised learning functionality. It would
also be beneficial to include tools for constructing black-
board systems, in particular ones that integrate knowl-
edge sources based on heuristics. This would comple-
ment ACE’s machine learning approach nicely.

ACKNOWLEDGEMENTS
The generous financial support from the Social Sciences
and Humanities Research Council of Canada, the Cen-
tre for Interdisciplinary Research in Music, Media and
Technology (CIRMMT) and the McGill Alma Mater
Fund is greatly appreciated.

REFERENCES
Aucouturier, J., and F. Pachet. 2004. Improving Timbre

Similarity: How high is the sky? Journal of Negative
Results in Speech and Audio Sciences 1(1).

Blake, C., and C. Merz. 1998. UCI repository of
machine learning databases. Retrieved April 13, 2005,
from www.ics.uci.edu/~mlearn/MLRepository.html.
University of California, Irvine, Department of
Information and Computer Sciences.

Dietterich, T. G. 2000. Ensemble methods in machine
learning. In Multiple classifier systems, J. Kittler and F.
Roli eds. New York: Springer.

Downie, J. S. 2004. International music information
retrieval systems evaluation laboratory (IMIRSEL):
Introducing D2K and M2K. Demo Handout at the
2004 International Conference on Music Information
Retrieval.

Fiebrink, R., C. McKay and I. Fujinaga. 2005.
Combining D2K and JGAP for efficient feature
weighting for classification tasks in music information
retrieval. Proceedings of the 2005 International
Conference on Music Information Retrieval.

Freund, Y., and R. E. Schapire. 1996. Experiments with
a new boosting algorithm. Proceedings of the
International Conference on Machine Learning. 148–
56.

van der Heijden, F., R. P. W. Duin, D. de Ridder and D.
M. J. Tax. 2004. Classification, parameter estimation
and state estimation: An engineering approach using
MATLAB. New York: Wiley.

Khoussainov, R., X. Zuo, and N. Kushmerick. 2004.
Grid-enabled Weka: A toolkit for machine learning on
the grid. ERCIM News 59.

Kittler, J. 2000. A framework for classifier fusion: Is it
still needed? Proceedings of the Joint IAPR
International Workshops on Advances in Pattern
Recognition. 45–56.

Kotsiantis, S., and P. Pintelas. 2004. Selective voting.
Proceedings of the International Conference on
Intelligent Systems Design and Applications. 397–402.

Kuncheva, L. 2004. Combining pattern classifiers.
Hoboken, NJ: Wiley.

McEnnis, D., C. McKay, I. Fujinaga, and P. Depalle.
2005. jAudio: A feature extraction library. Proceedings
of the 2005 International Conference on Music
Information Retrieval.

McKay, C. 2004. Automatic genre classification of MIDI
recordings. M.A. Thesis. McGill University, Canada.

Tindale, A., A. Kapur, G. Tzanetakis, and I. Fujinaga.
2004. Retrieval of percussion gestures using timbre
classification techniques. Proceedings of the
International Conference on Music Information
Retrieval. 541–4.

Tzanetakis, G., and P. Cook. 1999. MARSYAS: A
framework for audio analysis. Organized Sound 4 (3):
169–75.

Witten, I., and E. Frank. 2000. Data mining: Practical
machine learning tools and techniques with Java
implementations. San Francisco: Morgan Kaufmann.

49

