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ABSTRACT
Harmonic analysis is a standard musicological tool for
understanding many pieces of Western classical music
and making comparisons among them. Traditionally, this
analysis is done on paper scores, and most past research
in machine-assisted analysis has begun with digital repre-
sentations of them. Human music students are also taught
to hear their musical analyses, however, in both musical
recordings and performances. Our approach attempts to
teach machines to do the same, beginning with a corpus
of recorded Mozart symphonies. The audio files are first
transformed into an ordered series of normalized pitch
class profile (PCP) vectors. Simplified rules of tonal har-
mony are encoded in a transition matrix. Classical music
tends to change key more frequently than popular music,
and so these rules account not only for chords, as most
previous work has done, but also for the keys in which
they function. A hidden Markov model (HMM) is used
with this transition matrix to train Dirichlet distributions
for major and minor keys on the PCP vectors. The system
tracks chords and keys successfully and shows promise
for a real-time implementation.
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1 INTRODUCTION
Machine-assisted harmonic analysis has a long history
and continues to spawn active research [1, 2]. Much of
that research, however, has focused on digital analogues
to the symbols on a paper score [1, 3, 4, 5]. We choose
to begin with sound, using models drawn from the speech
and signal processing communities.

The project shares ground with Christopher Raphael’s
work on automatic transcription of piano music [6], al-
though the “harmonic” space of his problem domain en-
joys less a priori structure. Its inspiration is Alexan-
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der Sheh and Daniel Ellis’s chord recognition project for
songs by the Beatles [7]. We begin with a hidden Markov
model, as do Sheh and Ellis, but replace the more tradi-
tional Gaussian emission distributions with Dirichlet dis-
tributions. Dirichlet distributions have properties partic-
ularly well suited to recognizing chords and are the key
advance made in our work. They also bring the project
closer to several recent key tracking algorithms for audio
data [8, 9], and in a second important departure from Sheh
and Ellis, we choose a more complex harmonic model,
rooted in traditional music theory, that enables the system
to track key simultaneously with chord.

The second section of this paper outlines the theoret-
ical background necessary for understanding the model,
the third discusses the details of implementation and the
results, and the fourth offers ideas for further develope-
ment.

2 THEORETICAL BACKGROUND
2.1 Hidden Markov Models

Hidden Markov models (HMMs) are a family of statistical
models that have proven very useful for speech recogni-
tion and certain tasks in robotics and are growing increas-
ingly popular for musical problems. They are defined by a
discrete state space S that cannot be observed directly but
is assumed to generate a set of possibly multidimensional
and continuous observations, a complete set of transition
probabilities between these states as time passes, and a
formula for computing the probability of any observation
given some state in S. The simplest of these models – and
ours – make the first-order Markov assumption that for a
time-ordered set of random state variables S1, . . . ,ST ∈ S,

P(St+1|S1, . . . ,St) = P(St+1|St) . (1)

Under this assumption, the transition probabilities can be
stored in matrix form.

2.2 Harmonic Space

Much previous work either assumes that the music ana-
lyzed will remain in a single key from start to finish or
disregards the notion of key altogether, tackling the chord
recognition problem explicitly or considering transitions
between chords independent of their tonal context. Al-
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though it is frequently necessary to make simplifying as-
sumptions, these ones are especially limiting. Western
classical music modulates frequently, and contemporary
tonal theory rests on the assumption that it is not merely
local configurations of pitches that create musical mean-
ing but also the contexts in which these configurations
arise. A D major chord in the key of G major should yield
a PCP similar to that of a E[[ major chord in the key of
D[ major, but quite different harmonies (and correspond-
ing PCPs) are likely to follow. Our model thus considers
chord and key to be inseparable properties of any given
harmony.

Another group of previous work attempts only to iden-
tify the prevailing key. Most of these models are based on
Carol Krumhansl’s probe-tone key profiles or Vos and van
Geenen’s derivative algorithm [10, 5], although there have
been interesting alternatives using Elaine Chew’s spiral
model [11]. By choosing a different model, we are in
some sense attempting to relearn profiles from the ground
up: see also [12].

For ease of implementation and training, the model is
restricted to major and minor triads only, ignoring aug-
mented and diminished triads as well as sevenths, ninths,
and other additions. A full range of chromatic alterations,
however, are available within each key. Following Ald-
well and Schachter [13], we divide the triads into four
groups based on their degree of “mixture.” The diatonic
chords within each key employ no mixture. Primary mix-
ture accounts for chords that are “borrowed” from the par-
allel major or minor.1 Secondary mixture describes other
chromatic alterations of the third or fifth of the diatonic tri-
ads. Double mixture, as its name implies, includes both a
borrowing and a further alteration of the third of fifth. Ta-
ble 1 lists the chords included in the model and the types
of mixture necessary to produce them.

2.3 Pitch Class Profiles

One of the primary challenges of the project is to work
with digitized audio rather than a score-like format.
Among the many useful features that can be computed
from audio are pitch class profiles (PCPs) [14], which
Sheh and Ellis found to perform significantly better than
several popular alternatives. The computation of PCPs
begins with a windowed short-term Fourier transform
(STFT):

XSTFT[k,n] =
N−1

∑
m=0

x[n−m]w[m]e− j(2π/N)km . (2)

where n is the index of the edge of a window of length
N in the discrete time series x[·], w is a discrete window-
ing function of length N, and k indexes the frequency axis
from DC to the Nyquist frequency. The values of the
STFT for each bin are squared to generate a power spec-
trum and then mapped to the musical pitch class closest to
the frequency of the bin. For each window, these squared

1Aldwell and Schachter consider IV and V in minor to be
instances of primary mixture but note that they are essential to
the the key; we consider them to be native to minor keys for the
purposes of our model.

Major Minor

I none primary
i primary none
[II primary none
[ii double secondary
II secondary double
ii none primary
[III primary none
[iii double secondary
III secondary double
iii none primary
IV none none
iv primary none
V none none
v primary none
[VI primary none
[vi double secondary
VI secondary double
vi none primary
[VII primary none
[vii double secondary
VII secondary double
vii secondary double

Table 1: Tonal vocabulary and classification of mixture.

values are summed over the pitch class labels to gener-
ate a twelve-dimensional PCP. The PCPs then represent
the total amount of spectral energy in each musical pitch
class at regularly sampled points in time. They are similar
to Tzanetakis, Ermolinskyi, and Cook’s pitch histograms
[15] but with a more localized scope.

An alternative calculation of PCPs might begin with
the constant Q transform, which has had some success
in chord identification and the related task of polyphonic
pitch tracking [16, 17].

2.4 Dirichlet Distributions

A Dirichlet distribution is a probability distribution over
a set of discrete probability distributions. It is the con-
jugate prior of the multinomial distribution, which is a
generalization of the binomial distribution from a binary
decision to a set of n alternatives. If we label the probabil-
ities of choosing each of these alternatives ~p = p1, . . . , pn,
∑

n
i=1 pi = 1 and pi > 0 ∀i, then a Dirichlet distribution

with parameters ~u = u1, . . . ,un, ui > 0 ∀i is defined as

Dir(~p,~u) ,
1

Z(~u)

n

∏
i=1

pui−1
i . (3)

The Z(~u) term is a normalization constant defined as

Z(~u) ,
∏

n
i=1 Γ(ui)

Γ(∑n
i=1 ui)

(4)

where Γ represents the standard gamma function

Γ(x) ,
∫

∞

0
dt e−t tx−1 . (5)
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Major chords Minor chords

(a) Initial Dirichlet parameters, rotated for C major and minor. These parameters were estimated from synthesized chords
of four sawtooth waves within the standard playing frequency range of the Western classical orchestra. The shapes of the
distributions illustrate the mean distribution (see Eq. 6) while the parameter values are inversely proportional to the variance.

Major chords Minor chords

(b) Trained Dirichlet parameters, rotated for C major and minor. These parameters were estimated from the training corpus
using the EM algorithm seeded with the parameters above. The distribution shapes remain unmistakably major and minor
triads; variance has increased considerably.

Figure 1: Dirichlet parameters before and after training.
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The mean of a Dirichlet distribution is the normalization
of its parameters:

〈~p〉 =
~u

∑
n
i=1 ui

. (6)

Its variance decreases as the magnitude of ~u increases.
Dirichlet distributions are more attractive than Gaus-

sian models for systems where the relations among out-
puts are more important than their magnitude. PCP vec-
tors are a good example of this sort of system: what de-
fines a C major chord is not that C, E, and G are sounding
loudly but that they are relatively louder than any other
pitch classes sounding at the time. Although there have
been successes with Gaussian models for chord recogni-
tion, because Dirichlet distributions model the underlying
phenomenon more accurately, we expect an improvement
in performance. In order to use them, all PCP vectors must
be normalized such that their components sum to unity.

3 IMPLEMENTATION AND RESULTS
The implemented HMM draws its states from the har-
monic space outlined in Section 2.1, derives a transition
matrix from the mixture classifications, accepts ordered
sets of normalized PCP vectors as observation data, and
parameterizes the observation distributions as Dirichlet
distributions tied to the underlying states.

The transition matrix is defined by five hand-tuned
parameters: pk, the probability of remaining within the
current key, and pd1 > pd2 > pd3 > pd4 , the probabilities
of remaining within a harmony when it employs no, pri-
mary, secondary, and double mixture. All other entries
are set uniformly with respect to these constraints and
the “pivot region” constraints outlined by Fred Lerdahl in
Tonal Pitch Space [18]. Lerdahl’s constraints allow major
keys to modulate only to the related keys i, ii, iii, IV, V,
vi and minor keys only to I, [III, iv, v, [VI, and [VII, and
even in these cases, at least one of the chords must be a
tonic.

In order to maximize the utility of the training data,
our system defines only two Dirichlet parameter vectors,
~umajor and ~uminor. To get the expected obervation distribu-
tion for any given harmony, the base parameter vector for
its mode is rotated until the root of the parameter vector
matches the root of the harmony. Note that triads share the
same observation distribution regardless of their key: all
the information for tracking keys must be encoded in the
transition matrix. Figure 1(a) shows our initial parame-
ters for the Dirichlet vectors, standardized on C major and
minor. Their overall shapes illustrate the expected distri-
butions, as per Equation 6, and the high magnitude repre-
sents a high confidence level in these initial selections.

These initial estimates were estimated from a ran-
domly generated four-note chords composed of sawtooth
waves from across the orchestral range of frequencies.
Thirds and fifths were alternately doubled. Modulo the
downsampling to 11,025 Hz and conversion to mono nec-
essary to make computation on the CD audio files in our
corpus tractable, the random samples were processed ex-
actly like the training data. First, they were broken into
windows of 2765 samples (250 ms) with a 50 percent

overlap. We tuned a Gaussian windowing function

w[k] = e−
1
2

(
α· k−N/2

N/2

)
(7)

and zero-padded the STFT to 4096 samples. Setting α to
1.3 yields a main lobe width of 3.7 Hz with a leakage fac-
tor of 2.3 percent, allowing us to discard only frequency
information below MIDI note 36 (65.4 Hz) while preserv-
ing the integrity of the PCP vectors. Any vectors whose
total energy after this processing fell below 1e-6 were re-
moved – in most cases, the leading and trailing samples of
each track.

The training corpus comprised professional compact
disc recordings of five Mozart symphonies in fifteen
movements altogether with a total duration of 70”39’:
Symphony No. 21 in A (K. 134), Symphony No. 22 in
C (K. 162), Symphony No. 23 in D (K. 181), Symphony
No. 24 in B[ (K. 182), and Symphony No. 25 in G mi-
nor (K. 183) [19]. After processing, the expectation max-
imization (EM) algorithm was used to tune the Dirich-
let parameters. The algorithm converges very quickly on
these data, and to avoid overtraining, we limited the algo-
rithm to five iterations.

Graphs of the trained Dirichlet parameters are in Fig-
ure 1(b). Although the variance has grown much greater
for experience with noisier, real-world data, the triadic
profiles are clear. The third of minor chords stands out,
suggesting correctly that in the absence of defining in-
formation, major chords should be the default predic-
tion. The relative lack of prominence of the fifth of minor
chords can be explained by the predominance of dimin-
ished triads in the corpus. There is no corresponding state
in the model, and the system usually guesses that they are
minor triads instead, enabled by this weaker emphasis on
having a perfect fifth. Unfortunately, these guesses can
make poor harmonic sense – when vii◦ is functioning as a
dominant, for example – and it will be worthwhile to ex-
tend the model to account for diminished triads directly.

The system was tested on a recording of the Minuet
from Mozart’s Symphony No. 40 in G minor (K. 550)
from the same boxed set. Figure 2(a) includes a con-
densed excerpt from the score. Figure 2(b) underneath
displays a matrix of the corresponding PCP distributions
from the first time through the repeat; it is scaled linearly
in time, not necessarily with the score above it. Figure 2(c)
includes a ground truth harmonic analysis of the excerpt
given the limitations of our model to major and minor tri-
ads; chords are in the top row in roman type and the keys
underneath them in boldface. The phrase modulates from
G minor to D minor with some chromatic trickery in the
second half as well as a number of suspensions and other
non-harmonic tones. Also notice the paucity of well artic-
ulated triads in the PCP plot despite the fully orchestrated
texture above.

Underneath the ground truth in Figure 2(c) are the
chord and key sequences predicted by the model for both
the first and second passes through repeat in the recording
(without timing data). The free chord identification results
are excellent. The model fails to identify only 4 of the 24
harmonies in this example (17 percent), comparable with
previous work, and these are “good” mistakes. The first
error is g for E[ in m. 7, which is almost a viable alter-
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native analysis. It misses two other deceptive cadence fig-
ures, one in m. 10 and other in m. 12, mistaking [VI for the
tonic in both cases. These mistakes are again reasonable:
the submediant in deceptive cadences is meant to mimic a
tonic. It would have been almost impossible for our model
to figure out that it could label the c]◦7 in m. 11 as A, and
its guesses of c] the first time and b[ the second each make
the diminished-fifth compromise discussed earlier.

The key finding results are less impressive but a
marked improvement from before training. G minor and
D minor are very closely related keys, and with so much
chromaticism in the second half of the phrase, it is un-
derstandable that the repeat would have confused the sys-
tem. Moreover, because of the way in which harmonic
states are tied to the Dirichlet parameters, the system al-
most has to determine the chord sequence a priori and
then try to match a smooth progression of keys beneath
it using just the rudimentary information contained in the
transition matrix. A more advanced harmonic model is
needed.

4 CONCLUSIONS AND FUTURE WORK
Dirichlet distributions on PCP vectors are an efficient and
effective means for chord recognition in recorded perfor-
mances of symphonic music, and their accuracy should
improve further with more sophisticated harmonic tran-
sition models like Lerdahl’s or Raphael’s. Our current
system could be adapted for real-time performance easily
using a belief-updating network. Because it is an unsuper-
vised framework, it also lends itself to incorporating more
training data in the future, perhaps enough data to learn
more sophisticated harmonic models on its own.
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