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ABSTRACT
Searching and organizing growing digital music collec-
tions requires automatic classification of music. This pa-
per describes a new system, tested on the task of artist
identification, that uses support vector machines to clas-
sify songs based on features calculated over their entire
lengths. Since support vector machines are exemplar-
based classifiers, training on and classifying entire songs
instead of short-time features makes intuitive sense. On
a dataset of 1200 pop songs performed by 18 artists, we
show that this classifier outperforms similar classifiers that
use only SVMs or song-level features. We also show
that the KL divergence between single Gaussians and Ma-
halanobis distance between MFCC statistics vectors per-
form comparably when classifiers are trained and tested
on separate albums, but KL divergence outperforms Ma-
halanobis distance when trained and tested on songs from
the same albums.

Keywords: Support vector machines, song classifica-
tion, artist identification, kernel spaces

1 INTRODUCTION
In order to organize and search growing music collections,
we will need automatic tools that can extract useful infor-
mation about songs directly from the audio. Such infor-
mation could include genre, mood, style, and performer.
In this paper, we focus on the specific task of identifying
the performer of a song out of a group of 18. Since each
song has a unique performer, we use a single 18-way clas-
sifier.

While previous authors have attempted such classi-
fication tasks by building models of the classes directly
from short-time audio features, we show that an inter-
mediate stage of modeling entire songs improves clas-
sification. Further gains are also seen when using Sup-
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port Vector Machines (SVMs) as the classifier instead of
k-nearest neighbors (kNN) or other direct distance-based
measures. These advantages become evident when com-
paring four combinations of classifiers and features. Not
only does song-level modeling improve classification ac-
curacy, it also decreases classifier training times, allow-
ing rapid classifier construction for tasks such as active
retrieval.

We also explore the space of song-level features by
comparing three different distance measures for both
SVM and kNN classification. The first distance measure is
the Mahalanobis distance between so-called MFCC statis-
tics features as used in Mandel et al. (2005). As recom-
mended in Moreno et al. (2004), we also model songs
as single, full-covariance Gaussians and mixtures of 20
diagonal-covariance Gaussians, measuring distances be-
tween them with the symmetric Kullback Leibler diver-
gence.

Our dataset, a subset of uspop2002 , contained 1210
songs from 18 artists. When it was broken up so that
training and testing songs came from different albums,
an SVM using the Mahalanobis distance performed the
best, achieving a classification accuracy of 69%. When
the songs were randomly distributed between cross val-
idation sets, an SVM using the KL divergence between
single Gaussians was able to classify 84% of songs cor-
rectly.

1.1 Previous Work

The popularity of automatic music classification has been
growing steadily for the past few years. Many authors
have proposed systems that either model songs as a whole
or use SVMs to build models of classes of music, but to
our knowledge none has combined the two ideas.

West and Cox (2004) use neither song level features
nor SVMs. Instead, they train a complicated classifier on
many types of audio features, but still model entire classes
with frame-level features. They show promising results on
6-way genre classification tasks, with nearly 83% classifi-
cation accuracy for their best system.

Aucouturier and Pachet (2004) model individual songs
with GMMs and use Monte Carlo methods to estimate the
KL divergence between them. Their system is designed
as a music-retrieval system, and thus its performance is
measured in terms of retrieval precision. They do not use

594



an advanced classifier, as their results are ranked by kNN.
They do provide some useful parameter settings for var-
ious models that we use in our experiments, namely 20
MFCC coefficients and 20 Gaussian components in our
GMMs.

Logan and Salomon (2001) also model individual
songs as GMMs, trained using k-means instead of EM.
They approximate the KL divergence between GMMs as
the earth mover’s distance based on the KL divergences of
the individual Gaussians in each mixture. Since their sys-
tem is described as a distance measure, there is no mention
of an explicit classifier. They do, however, suggest gener-
ating playlists with the nearest neighbors of a seed song.

Tzanetakis and Cook (2002) also calculate song-level
features. They classify songs into genre with kNN based
on GMMs trained on song features. Even though they
only had 100 feature vectors per class, they were still able
to model these classes with GMMs having a small num-
ber of components because of their parsimonious use of
feature dimensions.

Of the researchers classifying music with SVMs,
Whitman et al. (2001) and Xu et al. (2003) both train
SVMs on collections of short-time features from entire
classes, classify individual frames in test songs, and then
let the frames vote for the class of the entire song.

Moreno et al. (2004) use SVM classification on
various file-level features for speaker identification and
speaker verification tasks. They introduce the Symmetric
KL divergence based kernel and also compare modeling a
file as a single, full-covariance Gaussian or a mixture of
Gaussians.

2 ALGORITHM
2.1 Song-Level Features

All of our features are based on mel-frequency cepstral
coefficients (MFCCs). MFCCs are a short-time spectral
decomposition of an audio signal that conveys the gen-
eral frequency characteristics important to human hearing.
While originally developed to decouple vocal excitation
from vocal tract shape for automatic speech recognition
(Oppenheim, 1969), they have found applications in other
auditory domains including music retrieval (Logan, 2000;
Foote, 1997). At the recommendation of Aucouturier and
Pachet (2004), we used 20-coefficient MFCCs.

Our features are most accurately described as timbral
because they do not model any temporal aspects of the
music, only its short-time spectral characteristics. We
make the strong assumption that songs with the same
MFCC frames in a different order should be considered
identical. Some authors call this type of modeling a “bag
of frames”, after the “bag of words” models used in text
retrieval, which are based on the idea that each word is an
independent, identically distributed (IID) sample from a
bag containing many words in different amounts.

Once we have extracted the MFCCs for a particular
song, we describe that song in a number of ways, compar-
ing the effectiveness of each model. The mean and covari-
ance of the MFCCs over the duration of the song describe
the Gaussian with the maximum likelihood of generat-
ing those points under the “bag of frames” model. Those

statistics, however, can also be unwrapped into a vector
and compared using the Mahalanobis distance. Equiv-
alently, the vectors can be normalized over all songs to
be zero-mean and unit-variance, and compared to one an-
other using the Euclidean distance. Going beyond the
simple Gaussian model, a mixture of Gaussians, fit to the
MFCCs of a song using the EM algorithm, is richer, able
to model nonlinear correlations.

2.2 Support Vector Machines

The support vector machine is a supervised classification
system that finds the maximum margin hyperplane sepa-
rating two classes of data. If the data are not linearly sep-
arable in the feature space, as is often the case, they can
be projected into a higher dimensional space by means of
a Mercer kernel, K(·). In fact, only the inner products of
the data points in this higher dimensional space are nec-
essary, so the projection can be implicit if such an inner
product can be computed directly.

The space of possible classifier functions consists of
weighted linear combinations of key training instances in
this kernel space (Cristianini and Shawe-Taylor, 2000).
The SVM training algorithm chooses these instances (the
“support vectors”) and weights to optimize the margin be-
tween classifier boundary and training examples. Since
training examples are directly employed in classification,
using entire songs as these examples aligns nicely with the
problem of song classification.

2.3 Distance Measurements

In this paper, we compare three different distance mea-
surements, all of which are classified using a radial basis
function kernel. The MFCC statistics are the unwrapped
mean and covariance of the MFCCs of an entire song. The
distance between two such vectors is measured using the
Mahalanobis distance,

DM (u,v) = (u− v)T Σ−1(u− v), (1)

where Σ is the covariance matrix of the features across all
songs, approximated as a diagonal matrix of the individual
feature’s variances.

The same means and covariances, when reinterpreted
as a single Gaussian model, can be compared to one an-
other using the Kullback Leibler divergence (KL diver-
gence). For two distributions, p(x) and q(x), the KL di-
vergences is defined as,

KL(p || q) ≡

∫

p(x) log
p(x)

q(x)
dx (2)

= Ep

{

log
p(X)

q(X)

}

. (3)

For single Gaussians, p(x) = N (x;µp,Σp) and q(x) =
N (x;µq,Σq), there is a closed form for the KL diver-
gence (Penny, 2001),

2KL(p || q) =2KLN (µp,Σp;µq,Σq) (4)

= log
|Σq|

|Σp|
+ Tr(Σ−1

q Σp)

+ (µp − µq)
T Σ−1

q (µp − µq)− d. (5)
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Unfortunately, there is no closed form solution for the
KL divergence between two GMMs, it must be approxi-
mated using Monte Carlo methods. An expectation of a
function over a distribution, p(x), can be approximated
by drawing samples from p(x) and averaging the values
of the function at those points. In this case, by drawing
samples X1, . . . , Xn ∼ p(x), we can approximate

Ep

{

log
p(X)

q(X)

}

≈
1

n

n
∑

i=1

log
p(Xi)

q(Xi)
. (6)

We used the Kernel Density Estimation toolbox from Ihler
(2005) for these calculations.

Also, note the relationship between the above Monte
Carlo estimate of the KL divergence and maximum like-
lihood classification. Instead of drawing samples from a
distribution modeling a collection of MFCC frames, the
maximum likelihood classifier uses the MFCC frames di-
rectly as evaluation points. If M1, . . . ,Mn are MFCC
frames from a song, drawn from some distribution p(m),
the KL divergence between the song and an artist model
q(m) can be approximated as

Ep

{

log
p(M)

q(M)

}

= Ep {log p(M)} − Ep {log q(M)}

(7)

≈ Hp −
1

n

n
∑

i=1

q(Mi), (8)

where Hp, the entropy of p(m), and n are constant for a
given song and thus do not affect the optimization. For
a given song, then, choosing the artist model with the
smallest KL divergence is equivalent to choosing the artist
model under which the song’s frames have the maximum
likelihood.

Since the KL divergence is neither symmetric nor pos-
itive definite, we must modify it to satisfy the Mercer con-
ditions in order to use it as an SVM kernel. To symmetrize
it, we add the two divergences together,

DKL(p, q) = KL(p || q) + KL(q || p). (9)

Exponentiating the elements of this matrix will create a
positive definite matrix, so our final gram matrix has ele-
ments

K(Xi, Xj) = e−γDKL(Xi,Xj), (10)

where γ is a parameter that can be tuned to maximize clas-
sification accuracy. Calculating these inner products is rel-
atively costly and happens repeatedly, so we precompute
DKL(Xi, Xj) off line and only perform lookups on line.

3 EVALUATION
3.1 Dataset

We ran our experiments on a subset of the uspop2002 col-
lection (Berenzweig et al., 2003; Ellis et al., 2005). To
avoid the so called “producer effect” or “album effect”
(Whitman et al., 2001) in which songs from the same al-
bum share overall spectral characteristics much more than

Table 1: Artists from uspop2002 included in dataset

Aerosmith Beatles Bryan Adams
Creedence Clear-
water Revival

Dave Matthews
Band

Depeche Mode

Fleetwood Mac Garth Brooks Genesis
Green Day Madonna Metallica
Pink Floyd Queen Rolling Stones
Roxette Tina Turner U2

KL

KL

MFCCs

A
rt

is
t 1

A
rt

is
t 2

Test Song

Min Artist

Training

GMMs

Figure 1: Classification of artist level features without us-
ing an SVM. The shaded region indicates calculations per-
formed during training.

songs from the same artist’s other albums, we designated
entire albums as training, testing, or validation. The train-
ing set was used for building classifiers, the validation set
was used to tune model parameters, and final results were
reported for songs in the test set.

In order to have a meaningful artist identification task,
we selected artists who had enough albums in uspop2002
to partition in this way, namely three albums for training
and two for testing. The validation set was made up of any
albums the selected artists had in uspop2002 in addition
to those five. 18 artists (out of 400) met these criteria,
see Table 1 for a complete list of the artists included in
our experiments. In total, we used 90 albums by these 18
artists which contained a total of 1210 songs divided into
656 training, 451 testing, and 103 validation songs.

In addition to this fixed grouping of albums, we also
evaluated our classifiers with three-fold cross-validation.
Each song was randomly assigned to one of three groups
and the classifier was trained on two groups and then
tested on the third. All three sets were tested in this
way and the final classification accuracy used the cu-
mulative statistics over all rounds. We repeated these
cross-validation experiments for five different divisions of
the data and averaged the accuracy across all repetitions.
This cross-validation setup divides songs, not albums, into
groups, so the “album effect” is readily apparent in its re-
sults.

3.2 Experiments

In our experiments, we compared all four combinations
of song-level versus artist-level features, and SVM ver-
sus non-SVM classifiers. We also investigated the effect
of different distance measures on SVM and kNN classi-
fication. See Figures 1 and 2 for a graphical depiction of
the feature extraction and classification processes for artist
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Figure 2: Classification of song level features with a
DAG-SVM. The shaded region indicates calculations per-
formed during training. Note that the song-level features
could be GMMs and the distance function could be the
KL divergence, but it is not required.

and song level features, respectively.
The first experiment used neither song-level features

nor SVMs, training a single GMM on the MFCC frames
from all of an artist’s songs at once. The likelihood of each
song’s frames was evaluated under each artist model and
a song was predicted to come from the model with the
maximum likelihood of generating its frames. We used
50 Gaussians in each artist GMM, trained on 10% of the
frames from all of the artist’s training songs, for approxi-
mately 12000 frames per artist.

The second experiment used SVMs, but not song-level
features. By training an 18-way DAG-SVM (Platt et al.,
2000) on a subset of the frames used in the first exper-
iment, we attempted to learn to classify MFCC frames
by artist. To classify a song, we first classified all of its
frames and then predicted the song’s class to be the most
frequently predicted frame class. Unfortunately, we were
only able to train on 500 frames per artist, not enough
to achieve a classification accuracy significantly above
chance levels.

Experiments with song level features compared the ef-
fectiveness of three different distance measures and song
models. The Mahalanobis distance and KL divergence be-
tween single Gaussians shared an underlying representa-
tion for songs, the mean and covariance of their MFCC
frames. These two models were fixed by the songs them-
selves, except for the SVM’s γ parameter. The KL di-
vergence between GMMs, however, had a number of ad-
ditional parameters that needed to be tuned. In order to
make the calculations tractable, we trained our GMMs on
3000 MFCC frames from each song, roughly 10-20% of
the total. We decided on 20 Gaussian components based
on estimates of the number of samples needed per Gaus-
sian given the previous constraint and the advice of Au-
couturier and Pachet (2004). We also selected the number
of Monte Carlo samples used to approximate the KL di-
vergence. In this case 500 seemed to be high enough to
give fairly consistent results, while still being fast enough
to calculate for 1.4 million pairs of songs.

The third experiment used song-level features, but a
simple k-nearest neighbors classifier. For all three song-
level features and corresponding distance measures, we
used a kNN classifier to label test songs with the label
most prevalent among the k training songs the smallest
distance away. For these experiments k was varied from 1

to 10, with k = 1 performing either the best or competi-
tively.

The final experiment used song-level features and an
SVM classifier. Again, for all three song-level features
and Gram matrices of distances, we learned an 18-way
DAG-SVM classifier for artists. We tuned the γ param-
eter of the SVMs to maximize classification accuracy. In
contrast to the first two experiments, which were only per-
formed for the fixed training and testing sets separated by
album, the third and fourth experiments were also per-
formed on cross-validation datasets.

3.3 Results

See Table 2 for the best performance of each of our clas-
sifiers and Figure 3 for a graph of the results for separate
training and testing albums. These results clearly show
the advantage of using both song-level features and SVM
classifiers, a 15 percentage point gain in 18-way classifi-
cation accuracy.

It should also be noted that training times for the
two classifiers using low-level features were considerably
higher than for those using song-level features. While
song-level features involve an initial investment in ex-
tracting features and measuring distances between pairs of
songs, the classifiers themselves can be trained quickly on
any particular subset of songs. Fast training makes these
methods useful for relevance feedback and active learning
tasks, such as those described in Mandel et al. (2005).

In contrast, artist level classifiers spend little time ex-
tracting features from songs, but must train directly on a
large quantity of data up front, making retraining just as
costly as the initial computational expense. In addition,
classifying each song is also relatively slow, as frames
must be classified individually and the results aggregated
into the final classification. For both of these reasons, it
was difficult to obtain cross-validation data for the artist-
level feature classifiers.

See Table 3 for the performance of the three dis-
tance measures used for song-level features. The Maha-
lanobis distance and KL divergence for single Gaussians
performed comparably, since for the 451 test points, a dif-
ference of 0.039 is not statistically significant. Surpris-
ingly, however, the KL divergence between single Gaus-
sians greatly surpassed the Mahalanobis distance when
trained and tested on songs from the same albums.

All of the SVM results in Table 3 were collected for
optimal values of γ, which differed between distance mea-
sures, but not between groups of songs. Since training
SVMs and changing γ took so little time after calculating
the Gram matrix, it was easy to find the best performing γ

by searching the one-dimensional parameter space.

4 DISCUSSION
Modeling songs instead of directly modeling artists makes
intuitive sense. Models like GMMs assume stationarity
or uniformity of the features they are trained on. This
assumption is much more likely to hold over individual
songs than over an artist’s entire catalog. Individual songs
might even be too varied, as in the case of extended-form
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Table 2: Classification accuracy on 18-way artist identifi-
cation reported for training and testing on separate albums
(Sep) and training and testing on different songs from the
same albums (Same). For separate albums (N = 451) sta-
tistical significance is achieved for a difference of around
.06. For songs from the same album (N = 2255) statisti-
cal significance is achieved for a difference of around .02.

Classifier Song-Level? SVM? Sep Same
Artist GMM No No .541 —
Artist SVM No Yes .067 —
Song KNN Yes No .524 .722
Song SVM Yes Yes .687 .839

Table 3: Classification accuracy for different song-level
distance measures.

Classifier Distance Sep Same
KNN Mahalanobis .481 .594
KNN KL-Div 1G .524 .722
KNN KL-Div 20G .365 .515
SVM Mahalanobis .687 .792
SVM KL-Div 1G .648 .839
SVM KL-Div 20G .431 .365

compositions in which the overall timbre changes dramat-
ically between sections. Such songs call for summaries
over shorter intervals, perhaps at the level of seconds in-
stead of minutes, so that there is enough data to support a
rich model, but not so much data that the model averages
out interesting detail.

Table 3 also clearly shows the “album effect” in which
almost every classifier performs significantly better when
trained and tested on songs from the same albums. De-
pending on the situation, one evaluation might be more
useful than the other. For example, if a person hears a
song on the radio that he or she likes, it would make sense
to look for similar songs that could come from the same
album. On the other hand, if a shopper is looking for new
albums to buy based on his or her current collection, a
recommendation system would want to avoid the training
albums.

One reason the KL divergence on GMMs performed
so badly might be the number of samples we used in our
Monte Carlo estimates of KL divergence. 500 samples
is just barely enough to get a reasonable estimate of the
KL divergence, but apparently this estimate is too noisy
to help SVM or kNN classification. A very good approxi-
mation would probably have taken thousands of samples,
an therefore ten times as long to compute the 1.4 million
element Gram matrix, already pushing the limits of our
computational power.

We have shown that audio-based music classification
is aided by computing features at the song level and by
classifying the features with support vector machines in-
stead of simple k-nearest neighbors classifiers.

Art GMM Art SVM Maha 1G 20G
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SVM
non−SVM

Figure 3: Classification accuracy on separate training
and testing albums. From left to right, the columns are:
GMMs trained on artist-level features, SVMs trained on
artist-level features, and then kNN and SVMs using the
Mahalanobis distance, the KL divergence between single
Gaussians, and the KL divergence between mixtures of 20
Gaussians.

4.1 Future Work

As a simple extension to this work, we could use a fea-
ture mid-way between the song and frame levels. By di-
viding a song into dozens of pieces, extracting the fea-
tures of those pieces and classifying them individually,
we would get many of the advantages of both approaches.
There would be a relatively small number of feature vec-
tors per song, making training and testing fast, and the
smaller pieces would be more likely to be timbrally uni-
form. This division could also allow a classifier to con-
sider a song’s temporal structure, employing, for example,
a hidden Markov model. Other authors have used hidden
Markov models for music classification and description,
but the input to those models has been individual MFCCs
or spectral slices, not larger structures.
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