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ABSTRACT
A method is presented for automatic transcription of sung
melodic fragments to score-like representation, including
metric values and pitch. A joint model for pitch, rhythm,
segmentation, and tempo is defined for a sung fragment.
We then discuss the identification of the globally optimal
musical transcription, given the observed audio data. A
post process estimates the location of the tonic, so the
transcription can be presented into they key of C. Experi-
mental results are presented for a small test collection.

Keywords: monophonic music recognition, graphical
models

1 INTRODUCTION
The problem of automatic transcription of sung melodic
fragments needs little justification or motivation within
the music information retrieval community, since some
form of this problem is the first step in any query-by-
humming-type system. This community contains quite a
few efforts that describe this recognition problem in var-
ious levels of detail including McNab et al. (1996), Haus
and Pollastri (2001), Meek and Birhmingham (2002),
Pauws (2002), Song et al. (2002), Clarisse et al. (2002),
Pardo et al. (2002). Singing recognition has other appli-
cations such as the preservation of unnotated vocal mu-
sic traditions and for speech-recognition-like interfaces to
music notation software. We also find significant intel-
lectual merit in this problem, independent of any applica-
tions, with its deep ties to human cognition and the asso-
ciated modeling and computational challenges.

Music is an unusually organized and rule-bound do-
main when compared to other recognition domains such
as speech or vision. In such a domain we are particularly
inclined to use “Ockham’s razor” as a guiding principle —
given two hypotheses that explain the data equally well,
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we believe the simpler one to be more likely. We feel
this criterion is particularly appropriate for music since, it
seems to be consistent with human perception of music,
while it is often straightforward to formalize the notion of
simplicity for musical hypotheses. The idea of Ockham’s
razor is thoroughly embedded in much literature on recog-
nition, including that in the music information retrieval
community, and is often implemented through explicit
penalty terms in optimization formulations or through the
use prior distributions in probabilistic models. Exam-
ples of explicit penalties within the MIR community are
Dixon (2001), Scheirer (1998) and Goto (2004) while ex-
amples of model-based penalties are Raphael and Stod-
dard (2003), Cemgil and Kappen (2003), and Abdallah
and Plubley (2004).

Some notions of simplicity can be described without
any knowledge of the deeper structure of music. For
instance, a sung fragment is presumably composed of
“notes” having fundamental frequencies that, given a tun-
ing reference, are pitches in the chromatic scale. We ex-
pect comparatively few notes in a sung fragment, so a hy-
pothesis that explains each frame of audio as the closest
chromatic pitch is apt to explain the observed audio data
well, but produce an unrealistically complex hypothesis.
On the other hand, a hypothesis that groups contiguous
regions of similar frames into notes will produce simpler
hypotheses and is justifiable, even if the notes are some-
what “further” from the actual audio data.

All practitioners of machine recognition are likely to
agree with this analysis so far, but the art of modeling lies,
in large measure, in deciding how far to extend the idea.
Continuing with the same example, the segmentation of
the data into notes can be accomplished more accurately
when the reference tuning is given, since then the possible
note frequencies are no longer a continuum, but rather a
small number of distinct and well-separated possibilities.
So, clearly we are much better off if the tuning is known,
but does this justify simultaneously estimating the tuning
as well as the partitioning into notes?

This same question appears over and over in the recog-
nition of melodic segments. For instance, if we know
the key of the fragment, the likelihoods of various pitches
changes dramatically, strongly favoring notes in the scale
of that key. Does this justify simultaneously estimating
the key?

The human’s partitioning of audio data into notes usu-
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ally occurs within a rhythmic framework in which inter-
onset times are simple proportions of one another. While
it is possible to partition audio data into notes just using
pitch information, understanding the average length of the
basic time unit, say beat or measure, allows us to capital-
ize on the basic rhythmic structure of music. Does this
added knowledge justify the simultaneous estimation of
beat length or tempo? As with pitch, there is consider-
ably more rhythmic structure to music than the notion of
simple proportions. Typically, music exists within a meter
implying rather strong assumptions about how measures
divide into notes. Should we incur the computational bur-
den of simultaneous estimation of meter to increase the
discriminating power of the model? Certainly there are
other examples of this basic question.

In some contexts, the goal of recognition might be to
learn these higher level constructs such as key, tempo, and
meter. In these cases, it seems we have no choice other
than including the constructs into the model. However,
even if we only desire a segmentation into notes, we be-
lieve there is significant benefit to modeling these “nui-
sance parameters.” People tend to be quite categorical in
their perceptions of music: Intervals are heard distinctly as
major thirds, octaves, etc. , even when the frequencies are
not completely consistent. Similarly we tend hear rhyth-
mic relations with definiteness even when not completely
supported by the literal data. For instance, this note lies
on the downbeat and this other is twice as long as the first.
We believe it is the simultaneous existence of tempo, me-
ter, key, harmony, phrase structure, motivic structure, and
their interrelations, such as harmonic rhythm, that brings
about this categorical perception. That is, within the con-
text of these higher level constructs, the human will be-
lieve no other data interpretation “makes sense.” For this
reason, we believe that models including deeper levels of
structure such as key, meter, and harmonic analysis, (even
in monophonic fragments) have much greater power to
discriminate accurately, even when the higher level con-
structs are not of interest.

We have suggested above that simultaneous estima-
tion of these higher level constructs is the only alternative
to simply forgetting about them, and, of course, this is not
the case. Our bias for simultaneous estimation is that it
circumvents the “chicken and egg” problem. For instance,
one can’t really estimate note value (quarter, eighth, etc.)
accurately without having a notion of tempo and vice-
versa. In general, simultaneous estimation is preferable
when the joint knowledge of parameters leads to a much
more definite data model than either parameter in isola-
tion. For instance, scale degree and tuning standard com-
bine to give a definite expectation of observed frequency
that can’t be realized without both parameters. In some
cases it might be possible to “bootstrap” one’s way up,
adding more sophisticated structure to our interpretation
with a series of successive recognition passes. When there
is no chicken-and-egg problem, we are in favor of this ap-
proach, in spite of its messiness, and give an example in
this paper.

This work should be viewed, in part, as an exploration
of these ideas. We try to formulate the maximum amount
of musically relevant information into our model that can

be handled in simultaneous estimation. After the fact, we
try to disambiguate further by estimating more structure.
We are not trying to build a front end for any particular
Query-by-Humming system. While we view the experi-
mental results as promising, we believe that even deeper
structure will lead to still better recognition as discussed
later. Our approach differs significantly from the work
cited above in its attempt to model the music at a signifi-
cantly deeper level. We believe the informal results, while
far from perfect, support this general line of research.

Specifically, the problem we address is as follows. We
treat sung musical fragments with known time signature
and mode: 3/4 time and major mode with a defined list of
possible measure positions in our experiments. We simul-
taneously estimate the partition of audio data into notes,
and the labeling of the notes with pitches and rhythmic
values that make sense within the metric context. We
also simultaneously estimate a (potentially) time-varying
tempo process. The scheme we propose is capable of
identifying the globally most likely configuration of these
parameters, given the audio data. In a post-processing
phase we further estimate the frequency of the tonic and
relabel the recognized pitches within this context. This
fixes some pitch errors and allows us to present all of the
recognized results automatically transposed to the key of
C major.

2 THE MODEL
We assume that the audio fragment to be recognized has a
known time signature. While this assumption is certainly
unrealistic for some examples, the audio recognition prob-
lem is difficult enough to warrant some simplifying as-
sumptions. We further assume the possible rhythm posi-
tions are enumerated in a set R and model the sequence
of note onset positions as a Markov chain.

To be more specific, suppose the fragment is in 3/4
time and that only note onsets beginning at eighth-note
positions are deemed possible. Then the possible onset
positions are described by the set

R = {start,
0

6
,
1

6
,
2

6
,
3

6
,
4

6
,
5

6
, tie, end}

We model the sequence of measure positions by a Markov
Chain, R0, R1, . . . , RK where Rk ∈ R that must begin in
the start state and end in the end state. Thus we assume
an initial distribution P (R0 = start) = 1 and transition
probability matrix

P (Rk+1 = rk+1|Rk = rk) = Q(rk, rk+1)

The tie element corresponds to a note that is tied over
from the current measure to the beginning of the next
measure and can thus be considered another “version” of
the bar line position. Adding this element to our set of
possible “states” allows us to model arbitrarily long notes
without significantly increasing the size of the state space.
We constrain the transitions so that Q(start, start) =
Q(start, tie) = 0 and Q(rk, rk+1) = 0 when J(rk+1) <

I(rk) where

J(r) =

{

1 if r = tie
r otherwise
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I(r) =

{

0 if r = tie
r otherwise

and rk, rk+1 6∈ {start, end}. This simply states that a
note cannot cross the bar line without using the tie state,
as in usual musical notation. The chain generates mea-
sure positions Rk until we reach the end state; we write
RK = end so that K is the index of the final state. The
modeling allows the rhythm to be unambiguously recon-
structed from the sequence of states. For instance, the
sequence start, 2

6
, tie, 3

6
, 0

1
, end corresponds to a rhythm

beginning on the 2nd quarter of the measure which is
tied over to a dotted quarter in the next measure fol-
lowed by another dotted quarter and ending with a note
on the downbeat of the following measure. We will write
R = (R0, . . . , RK) and r = (r0, . . . , rK), and similarly
for other vectors, for the collection of all rhythm variables
and their actual values. Due to the Markov assumption,
P (R = r) factors as

P (R = r) =

K
∏

k=1

Q(rk, rk+1)

for sequences r starting in the start position and end-
ing in the end position. Each transition, not including
the start and end states has an unambiguous amount of
musical time, in measures, it traverses, which we denote
l(rk, rk+1) = J(rk+1)− I(rk).

Associated with each measure position Rk is a pitch
variable Pk ∈ P = {rest, plo . . . , phi} giving either a rest
or the MIDI pitch of the note that is sung during Rk to
Rk+1. Without a key as reference it is difficult to give
a probability distribution for the pitches. However, if we
knew the tonic, we could design a reasonably informative
distribution on pitches. In our first stage of recognition we
assume a uniform distribution on pitches. In a later refine-
ment we will estimate the location of the tonic and use a
more refined pitch model. In both cases we use a “bag of
notes” model, meaning the pitches are independent draws
from some fixed pitch distribution. We write B(pk) for
the pitch distribution.

Unlike the model for the measure positions and
pitches, which are discrete, we model the sequence of on-
set times for the notes as a Gaussian process. For simplic-
ity of notation, we prefer to measure time in terms of anal-
ysis frames, which are ∆-second-long sequences of audio
samples on which we compute the FFT. Let S1, . . . , SK−1

be the local tempo variables, given in frames per measure,
and define T1, . . . , TK−1 to be the sequence of actual note
onset times, in frames. We model these variables jointly
by

Sk = Sk−1 + σk (1)
Tk = Tk−1 + l(Rk−1, Rk)Sk + τk (2)

for k = 2, . . . ,K − 1. The {σk, τk} variables are 0-mean
and Gaussian so the S process can be seen to be a ran-
dom walk. This model has been used in Raphael (2004)
and Cemgil (2004). If the {τk} variables were 0 then the
note onset times would evolve exactly as predicted by the
note lengths and tempo. The addition of the τ variables
adds robustness to the model by allowing small deviations

from what is predicted by the tempo and note length. The
rhythm-conditional density for the tempo and onset vari-
ables is then

p(s, t|r) = N(s1;µS1
, σ2

S1
)N(t1|0, σ

2

T1
) (3)

×
K
∏

k=2

N(sk; sk−1, σ
2

Sk

) (4)

×

K
∏

k=2

N(tk; tk−1 + l(rk−1, rk)sk, σ2

Tk

)(5)

where N(·;µ, σ2) is the normal density function with
mean µ and variance σ2. The variances {σ2

Sk

, σ2

Tk

} can
be allowed to depend on the amount of musical time tra-
versed by the transitions, since, presumably, longer notes
allow for larger increments in tempo and greater devia-
tions from the expected length.
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Figure 1: The distribution which generates the “spectral
bits.”

Finally, let Y1, . . . , YN denote the frames of audio data
each accounting for ∆ seconds. If the note onsets are fixed
(T = t) then these frames are partitioned into contigu-
ous segments corresponding to the notes of the fragment.
In particular, each frame, n, lies in segment k(n) where
tk(n) ≤ n < tk(n)+1. We connect our hidden variables to
the data by assuming that the Y1, . . . , YN are conditionally
independent given T = t and P = p so that

p(y|t, p) =
N
∏

n=1

p(yn|π(t, p, n))

where π(t, p, n) is the pitch being sung at frame n. That
is π(t, p, n) = pk(n).

To be specific, if π = π(t, p, n) is the pitch being sung,
we define the idealized power spectrum, fπ, as a superpo-
sition of peaks centered at the harmonics of pitch π as in
Figure 1. fπ is assumed to be normalized to sum to unity.
In defining our data model we treat the observed power
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spectrum in frame n, yn as a histogram of a sample from
the probability distribution fπ. That is

p(yn|π) = c
∏

ω

fπ(ω)yn(ω).

In the case in which the “pitch” is a rest, we take fπ=rest

to be a uniform model
Putting this all together gives a factorization of our

model as

p(r, p, t, s, y) = p(r)p(p)p(s|r)p(t|r, s)p(y|p, t) (6)

=

K
∏

k=1

Q(rk, rk+1)B(rk) (7)

× N(s1;µS1
, σ2

S1
)N(t1|0, σ

2

T1
)

×

K
∏

k=2

N(tk; tk−1 + l(rk−1, rk)sk, σ2

Tk

)

×

K
∏

k=2

N(sk; sk−1, σ
2

Sk

)

×

N
∏

n=1

p(yn|π(t, p, n))
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Figure 2: Description of the model as a directed acyclic
graph. The top section of the model represents, from top
to bottom, pitch (p) , rhythm (r) , tempo (s) , and onset
times (t). The bottom section of the model gives the condi-
tional distribution of the audio data (y) , given the labeling
of the frames (π). Since the labeling π can be determinis-
tically derived from t, p, we define a model p(r, p, t, s, y)

A graphical depiction of the model is given in Figure
2.

3 FINDING THE GLOBAL MAP
CONFIGURATION

A rather surprising fact is that, given our spectrogram
data y, the globally optimal configuration of the r, p, t, s,
(rhythm, pitch, onset times, tempo) sequences can be

computed using a variant of dynamic programming, under
reasonable assumptions. We discuss here the computation
of this global optimum

(r̂, p̂, t̂, ŝ) = arg max
r,p,t,s

p(r, p, t, s|y)

= arg max
r,p,t,s

p(r, p, t, s, y)

Our approach is to construct a tree that, in principle,
accounts for all possible configurations of the r, p, t, s se-
quences. In constructing this tree the continuously-valued
note onset times, t, are only considered to only take inte-
gral values tk ∈ {0, 1, . . . , (N − 1)}. A more fastidious
description of the model of the previous section would
have noted that the onset variables of Eqns. 4 and 5 are
not actually normal, but rather a discrete approximation
of normal evaluated only at the integers and further con-
strained so that 0 ≤ t1 < t2 < . . . , < tK ≤ N − 1.

A first observation is that, since there is no dependence
among our pitch variables, p1, . . . , pK−1, then given a
configuration of onset times t1, . . . , tK−1, the most likely
configuration of pitches is simple to compute. For in-
stance, the values t1, t2 specify that there is a note that
begins at frame t1 and ends at t2 (as long as r1 6= tie).
Thus the optimal pitch associated with this region must be

p̂1 = arg max
π∈P

t2−1
∏

n=t1

p(yn|π)

Thus fixing note boundaries automatically fixes the opti-
mal choice of pitches, so we will leave the pitch variables
out of the construction of our tree since they can be in-
ferred from the onset frames. The computation that asso-
ciates every possible sequence of frames with an optimal
pitch can be performed before we begin the construction
of our tree.

0/6

0/6

0/6

0/65/6

5/6

5/6

5/6

0/6

−−

−−

−−

−−

...
...

...

...

Figure 3: The tree describing the possible evolution of all
rhythm sequences and partitions of the audio data.

The tree is constructed by specifying the rhythm vari-
able fromR for each frame of audio data. The first frame
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is labeled with the value start At each lower level in the
tree we can either remain in the current note, the upper
branch in Figure 3, or we can move on to a new note and
choose a new value fromR, the lower branches in the tree.
It is important to observe that, while the tree only specifies
the possible sequences of R, other information is implic-
itly specified. First of all, a partial path in this tree fixes
the frames at which rhythm transitions take place, there-
fore fixing the first several values of T . Furthermore, as
noted above, fixing the note transition frames implies fix-
ing the optimal choices of the pitch variables P . Thus,
given our audio data Y , the only variables that are not
fixed by choosing a tree branch are the local tempo vari-
ables, S.

Suppose we consider a branch of the tree at depth n,
therefore a possible explanation of the first n frames of
data yn

1
= y1, . . . , yn. Suppose that in this branch the

kth note begins on the nth frame. Thus the audio data yn
1

accounts for the variables rk
1
, pk−1

1
, tk

1
, sk

1
. Examination

of Eqn. 7 shows that p(rk
1
, pk−1

1
, tk

1
, sk

1
, yn

1
) is a product

of constants and Gaussian density functions. Thus this
probability can be expressed as the exponential of some
quadratic function of the tk

1
and sk

1
variables. It is well-

known that if one maximizes a quadratic function over
several of the variables, the result is quadratic in the re-
maining variables. Thus

max
tk

1
,s

k−1

1

p(rk
1
, pk

1
, tk

1
, sk

1
, yn

1
) = he−

1

2
(sk−m)

2/v

def
= K(sk;h,m, v)

The details of how this maximization are performed are
somewhat involved and can potentially distract one from
the simple observation that the computation can be per-
formed in closed form. Details are discussed in Raphael
(2002) for a similar problem and model.

The above maximization gives the optimal probability
of the branch as a function of the current tempo. We will
store this function at every branch. In fact, it is relatively
easy to compute the function recursively from the parent
branch. In particular if p̂b(s) is the optimal probability of
the current branch b as a function of the current tempo s,
Then for a child branch b′, we have

p̂b′(s) = p̂b(s)

when no note transition takes place between b and b′. Oth-
erwise, if a note transition takes place at level n of the tree,
we move from rhythm position r to r′, from the last note
onset time t to the current time t′ = n, and from the last
(unknown) tempo, s to the current tempo s′ by

p̂b′(s) = max
s

p̂b(s)Q(r, r′)B(π̂)

× p(s′|s)

× p(t′|s′, t)

×

t′
∏

ν=t

p(yν |π̂)

where π̂ is the optimal pitch for the interval (t, t′).
At this point we seem to be faced with an exponen-

tially growing tree, making the above process impossible

Figure 4: Left: The functions {p̂β(s)} before Right: The
reduced collection of functions after thinning.

to continue for more than a few levels of the tree. The
surprising fact is that the tree can be pruned to a tiny frac-
tion of its original size with no loss of optimality, using
dynamic programming.

Suppose we denote the collection of branches that be-
gin a new note ρ ∈ R at level n of the tree by B(ρ, n). If
for one of these paths, b ∈ B(ρ, n),

p̂b(s) ≤ max
β∈B(ρ,n)

p̂β(s)

for all s, there is no hope of b being a prefix to the optimal
path, since for all values of the current state (ρ, n, s) some
other path has a higher optimal probability. Thus we can
prune b with no loss of optimality. We refer to this opera-
tion as the thinning operation, graphically depicted in Fig-
ure 4 and write Thin(B(ρ, n)) for the surviving branches.
It is easy to show that thinning can be performed with a
computational complexity that is quadratic in the number
of original branches.

We continue the construction of this tree with thinning
until we reach level N . at this point it is easy to find the
surviving branch with the best optimal probability ending
with ρ = end. This will be the globally optimal path and
we can trace its history back to the root.

4 EXPERIMENTS
We now describe experiments with the analysis method
described above. Our goal in conducting this research is
to examine the problem of monophonic recognition from
a deeper structural level than has previously done. In par-
ticular, we wish to see if the imposition of basic musi-
cal knowledge can be an aid to the recognition process,
rather than to develop the best “front end” to a Query-
by-Humming system. Thus, the experiments serve as a
“course check,” rather than a formal evaluation, and are
well-suited to the exploratory nature of this work.

We collected a small test set of simple melodies in
3/4 time, all in major mode, sung by male voices. The
melodies were sung by a non-random subset of the au-
thor’s network of acquaintances. Several of the examples
are “choruses” of male voices. The test set contained a
total of 15 sound files. Our intention was to restrict our at-
tention to the cases in which the musical content is unam-
biguous to the human listener. We believe these “cleaner”
examples constitute the most interesting subset since the
human is relatively certain of the correct hypothesis, while
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the examples still pose considerable problems for recog-
nition. Thus these examples are well-suited for a study of
the relation between knowledge representation and recog-
nition results.

One improvement over the basic model we pursued
concerns the role of the key of the excerpt. In the first pass
of our algorithm we use a pitch model that gives equal
probability to all chromatic pitches assuming an arbitrary
choice of tuning. Not knowing the key leaves really no
other reasonable choice. Even with what must be an occa-
sionally inaccurate choice of tuning, our algorithm often
does a reasonable job of segmenting the data into notes
and ascribing rhythm. In a final phase, we “correct” the
pitches by the following method.

We begin with a model for pitch distribution assuming
the key of C major. This model is not estimated from data,
but simply assumes that the notes in the tonic triad are the
most likely, the notes in the scale are the 2nd most likely,
and the remaining “black” notes are the least likely. We
consider the data likelihood, assuming the given note seg-
mentation, using 24 quarter-steps candidates for the tonic.
For each tonic location we label each pitch with the choice
that maximizes the pitch likelihood times the data likeli-
hood. This has the effect of “nudging” ambiguous pitches
toward plausible notes in the key. We choose the tonic lo-
cation that maximizes this likelihood over all of the data,
and call the tonic C. Thus all examples are automatically
transposed to C major, no matter where they are sung.
This method proves quite effective and identifies the cor-
rect key in all cases but the 1st example of “It Came upon
a Midnight Clear.” As it happens, the first phrase of the
carol does not contain the 4th scale degree, thus making
F a reasonable (or at least reasonably scoring) choice for
the tonic. In addition to supplying useful information, the
estimation of the tonic helps to correct notes whose actual
frequencies are ambiguously placed. This is an example
of how modeling of deeper musical structure can improve
recognition results.

A number of the recognized examples incorrectly es-
timated the tempo by a factor or two or three. The for-
mer case amounts to representing the music in 6/8 rather
than 3/4 with a 6/8 measure account for two 3/4 measures.
This error is nearly inevitable at our current stage, since
the distinction between these two meters requires a very
deep musical understanding which goes beyond that rep-
resented in our current model. The one example, “Daisy,”
whose tempo was off by a factor of three is more puz-
zling. We suspect that early in the recognition process
branches were mistakenly pruned that account for the cor-
rect tempo.

Several of the examples, “Happy Birthday,” “God
Save the Queen,” and “Silver Bells” were recognized as
“shifted” versions of the correct one. The distinction be-
tween these metrical shifts is also a subtle one, but it is
demonstrably one that our model makes correctly most of
the time.

The audio files as well as
the transcriptions are available at
http://xavier.informatics.indiana.edu/˜craphael/ismir05.
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