
USING THE GAMERA FRAMEWORK FOR BUILDING A LUTE
TABLATURE RECOGNITION SYSTEM

Christoph Dalitz Thomas Karsten

Niederrhein University of Applied Sciences

Reinarzstr. 49, 47805 Krefeld, Germany

christoph.dalitz@hsnr.de, thomas.karsten@gmx.de

ABSTRACT

In this article we describe an optical recognition system

for historic lute tablature prints that we have built with

the aid of the Gamera toolkit for document analysis and

recognition. We give recognition rates for various his-

toric sources and show that our system works quite well

on printed tablature sources using movable types. For en-

graved and manuscript sources, we discuss some principal

current limitations of our system and Gamera.

Keywords: Optical Music Recognition, Lute Tablature.

1 LUTE TABLATURE

From the 16th and early 17th century a large body of lute

tablature sources is extant. As a major part of this music is

derived from vocal models, it can be an ideal investigation

object for music information retrieval questions. Conse-

quently there are efforts like the ECOLM project [1] to

build a data base of machine readable tablature encodings

of lute music sources.

Usual optical music recognition (OMR) systems de-

signed for common music notation (CMN) cannot be used

for this purpose because lute music is written in tablature

rather than CMN. Figure 1 shows the characteristics of

lute tablature notation: rather than specifying the sound of

the music, it specifies when and in which frets the strings

of the instrument are stopped.

The symbols used for fret and rhythm had not been

standardized, but almost every historic source used its own

unique set of symbols. This is an important difference to

CMN, which consists of a limited set of symbols which

are consistent across different music scores. Consequently

a system for optical tablature recognition (OTR) must not

be designed to work with a single set of a priori known

symbols, but to be adaptable to differing tablature sym-

bols. We shall see below that the conception of training in

Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee pro-

vided that copies are not made or distributed for profit or com-

mercial advantage and that copies bear this notice and the full

citation on the first page.

c©2005 Queen Mary, University of London

d

a
d
d

a

cd
a c

d
a

c

d
a

8

course 4, fret 0

course 3, fret 3

string (course)

6
5

4
3

2
1

Figure 1: Lute tablature sample and music transcription

statistical pattern recognition provides an adequate frame-

work for this.

Besides the above problem, the complexity of recog-

nizing a particular source depends on two factors: how

much the individual symbols vary within the source and

whether symbols overlap and intersect. While the former

can hinder the identification of individual symbols, the lat-

ter poses problems on their proper segmentation. In our

present work we only consider sources printed with mov-

able types because in these the symbol variance is limited

to random defects and symbols are not overlapping.

2 THE GAMERA FRAMEWORK

The Gamera framework [2] has been developed by M.

Droettboom et al. as a flexible toolkit for building recog-

nition systems. Gamera essentially is a library for the

Python programming language and has a number of dis-

tinctive features:

• Gamera already provides functions for image seg-

mentation (projections, connected component anal-

ysis) and classification (kNN) and it has a classifier

training interface

• all methods can be combined flexibly because they

are provided as python modules. Own C++ functions

for image processing can be added as plugins

• platform independence, which has let us develop par-

allel on both Linux and MacOS X without noticeable

differences

478

• Gamera’s source code is freely available under the

GNU general public license

The last point is particularly important for research

projects, because it allows for full access to the underlying

techniques and enables other researchers to participate in

the development of Gamera. Consequently we have also

made the full source code of our system freely available

as a Gamera toolkit from our project homepage [3].

3 OUR RECOGNITION SYSTEM

The recognition process in our system consists of the

four steps preprocessing, segmentation, classification and

postprocessing. Table 1 provides an overview over the in-

dividual operations and shows what we could use from

Gamera and what we had to implement ourselves. The

following sections describe the individual steps in more

detail.

Table 1: Operations used from Gamera and implemented

by ourselves

Preprocessing:

rotation correction own implementation

(now in Gamera)

smoothing Gamera (convolution)

staff line removal own implementation

Segmentation:

symbol isolation Gamera (CC analysis)

Classification:

heuristic own implementation

statistic Gamera (kNN, grouping)

Postprocessing:

semantic interpretation own implementation

tablature coding own implementation (abc)

(midi with abc2midi,

postscript with abctab2ps)

3.1 Preprocessing and Segmentation

In order to be independent of the scanning resolu-

tion we first determine the characteristic dimensions

staffline height (staff line thickness) and staffspace height

(distance between adjacent staff lines) as the most fre-

quent black and white vertical runlengths [4].

When scanning a tablature book the image is usually

slightly rotated. Such a rotation has a negative effect

on both the detection of staff lines and the classification

of the tablature symbols and hence should be corrected,

which we have done with Postl’s projection profile method

[5]. Although a naive implementation is rather slow, we

have obtained reasonable performance by scaling the im-

age down to a staffline height of two pixels and by search-

ing the maximum with a golden section search [6].

The image quality of most historic lute tablatures is far

from ideal. Typical defects are random black speckles and

broken symbols. We identify black speckles as connected

components with a small black area. Small white holes

within tablature symbols or staff lines can be filled with

a convolution operation. We have chosen a kernel width

equal to staffline height and a height half as high. This

Figure 2: Staff line removal

rectangular shape has the effect that stafflines become bet-

ter connected.

While the above operations merely improve the image

quality and are optional, there is one final obligate prepro-

cessing operation: staff line removal. Figure 2 shows that

the symbols are only separable with a connected compo-

nent analysis after the staff lines have been removed, be-

cause otherwise all symbols are connected by staff lines.

Our removal method is based on Fujinaga [4] with two

major modifications: we have omitted the line rectifying

shearing step and have added an option to remove a staff

line section even when it touches a symbol. The latter is

used for fret letters between the lines. When they are on

the lines we simply keep vertical runlengths longer than

two times staffline height. Although this distorts the line

crossing part of symbols considerably, the effect on sym-

bol classification is less negative than one might expect,

because the distorted symbols are also used for training.

Before the staff lines are removed, we remember their

position, which we find via an analysis of the horizon-

tal projection profile. Although this only yields a single

row value per staff line, it is sufficient because the ver-

tical variation of a staff line after the skew correction is

considerably less than staffspace height.

3.2 Symbol Classification

Once the tablature symbols are isolated they are passed

one by one to the classifier which assigns each symbol to

a specific class like “eighth flag”, “bar line”, “fret number

zero”. For all symbols (except bar lines) we use a sta-

tistical classification method, which means that the fea-

ture distribution of the symbols needs to be trained before

recognition. This makes the system adaptable to a wide

range of tablature prints because no a priori assumptions

about the actual form of the individual symbols are made.

For classification we use the k nearest neighbor (kNN)

method [8] in combination with Gamera’s grouping algo-

rithm [7], which cares for disjoined symbols like the letter

“g” in figure 2. As this grouping algorithm requires the

group to be pretty close to a glyph from the training data,

it did not work well with bar lines, which are often broken

in historic tablature prints. Hence we classify bar lines

heuristically based upon their aspect ratio, width and total

height of a group of bar line fragments.

The kNN classifier recognition rate strongly depends

on the chosen set of features. Of Gamera’s 15 built in fea-

tures (see [2] for their description) 14 are useful for seg-

mentation based classification, resulting in 214 possible

feature combinations. We have used Morlaye’s tablature

479

book from 1552 with a training set of 3303 training sym-

bols and 1403 test symbols (four pages with a total of 16

staves) to measure the recognition rate for all possible fea-

ture sets. The results for single features are given in table

2. Note that some features are vector values; hence the

dimension is also given in the second column.

Table 2: Recognition rates for individual features

Feature Dimension Recognition Rate

area 1 70.4%

aspect ratio 1 74.5%

black area 1 33.9%

compactness 1 13.2%

moments 9 98.0%

ncols 1 52.8%

nholes 2 67.3%

nholes extended 8 87.0%

nrows 1 58.2%

skeleton features 5 70.5%

volume 1 42.8%

volume16regions 16 96.6%

volume64regions 64 97.3%

zernike moments 26 96.7%

For feature combinations, figure 3 shows how the

recognition rate depends on the feature set size. For all

sets of the same size the highest recognition rate value

is displayed. Our results nicely illustrate the point that

the addition of features does not necessarily increase the

recognition rate.

The highest recognition rates were achieved by sev-

eral feature combinations followed closely by other com-

binations. Hence we have based our decision for a par-

ticular feature set not on the recognition rate alone, but

also on the complexity of the feature computation, and

settled on the combination aspect ratio, moments, nrows,

volume64regions (measured recognition rate: 99.2%).

Another parameter that needs to be chosen in kNN

classification is the number k of neighbors taken into ac-

count. According to theory [8], k should be considerably

smaller than the smallest class population among the train-

ing samples. Moreover the class population ratios in the

training set should be representative for the original data,

which implicitly takes the a priori probabilities into ac-

count. These constraints have the effect that k could be

 0.97

 0.98

 0.99

 2 4 6 8 10 12 14

m
ax

im
u
m

 r
ec

o
g
n
it

io
n
 r

at
e

number of features

Figure 3: Maximum recognition rate for different feature

set sizes

hardly larger than one, because there are some compara-

bly rare symbols in lute tablature like high fret numbers or

very long or very short rhythm values.

3.3 Postprocessing

After the individual symbols are recognized, their musical

semantics needs to be determined. Essentially this means

to organize the symbols as a linear sequence of chords.

Here “chord” does not only mean “set of simultaneous

notes”, but any set of symbols which belong together at

a single point on the time axis. For instance a “chord” can

be a bar line, a time signature or an actual chord of notes

together with its rhythm value.

In order to establish this chord sequence, we assign

each symbol a staff and course number based upon the

staff line positions determined during the preprocessing

phase. Then all symbols within the same staff can be

grouped into chords. A natural grouping criterion is

whether symbols overlap horizontally. In order not to miss

small symbols like dots we do not use an absolute over-

lapping threshold, but a threshold for the ratio of overlap

and symbol width. When using this criterion it is neces-

sary to first ignore wide symbols that span more than one

chord and take care of them after grouping. The thresh-

old whether a symbol is “wide” can be based upon staff-

space height or the median symbol width.

Once the chord sequence is established, the tablature

code can be generated. Unfortunately there is currently

no widely accepted open lute tablature encoding format.

a
a
a
c

a
a
a
c a

d c

d
b
a

d

c
a b d

abd
a

d
c
d

d
ba

dba
d

c

a
a
a
d c d

f

c
e

Figure 4: Sample result of our OTR system

480

ECOLM uses T. Crawford’s TabCode [1], but apart from

the internal ECOLM software there is currently no soft-

ware available that can read this format. Hence we have

used C. Dalitz’ tablature extension of the abc format, for

which free software is available [9]. It should be noted

however that the actual tablature encoding does not mat-

ter, because conversion programs could be easily written

or our OTR system could be easily extended to produce

other codes.

We also generate a music transcription in a “literal”

rather than an “interpretative” way [10]. Figure 4 shows

the OTR result after it has been processed with the pro-

gram abctab2ps. The key signature is automatically cho-

sen in such a way that the number of accidentals is mini-

mized. In figure 4 this leads to an E flat, because there are

two flat E’s, but only one natural E.

3.4 Performance and Limitations

We have tested our system with several sources using dif-

ferent tablature types (both “french” and “italian” lute tab-

lature) and obtained the error rates given in table 3. Note

that this is not just the error rate for classifying individual

symbols but also includes errors introduced by our post-

processing operations.

Table 3: Error rates of our system for various historic tab-

lature prints (for details about the sources see [11])

Source
Training Test Error
Symbols Symbols Rate

Morlaye 1552a 3303 1673 0.6%

Denss 1594 3390 1827 3.6%

Francisque 1600 2959 1645 4.1%

Spinacino 1507a 3023 2286 1.8%

Giovanni Maria
da Crema 1546a 2275 1850 3.8%

Casteliono 1536 1577 1713 3.9%

Most of the individual recognition errors can be traced

down to the following reasons:

• artifacts from the staff line removal procedure

(da Crema, Casteliono)

• errors in bar line recognition (Francisque)

• wrong chord grouping

• touching symbols (Denss)

In order to improve the staff line removal, we have begun

to investigate different staff line removal techniques sug-

gested in the literature. The bar line recognition might be

improved by a semi-heuristic approach: first vertical line

fragments could be classified statistically and among these

groups forming bar lines could be searched.

The last problem of touching symbols however is

more fundamental. It is due to our approach of a symbol

agnostic segmentation via a connected component analy-

sis. Although Gamera can deal to a certain extent with

over-segmented images [7], it currently cannot cope with

under-segmented symbols. Consequently our system is

not applicable to manuscripts or engravings, which typi-

cally do not only have touching symbols but also a lot of

intersecting symbols.

4 CONCLUSION

According to the Gamera homepage [2], Gamera is a tool

for “domain experts, who have a strong knowledge of the

documents in a collection, but may not have a formal tech-

nical background”. This statement should be taken with a

grain of salt. It holds as long as everything can be achieved

with methods that Gamera provides out of the box, be-

cause Python is an easy to learn language particularly for

people without a training in computer science. The addi-

tion of custom plugins however requires some knowledge

of image processing techniques and advanced C++ pro-

gramming concepts.

Thus we consider Gamera ideal for “domain experts”

who also have some technical background. That we have

implemented our OTR system within the Gamera frame-

work has reduced our development time considerably. Ac-

tually we consider our OTR system as a demonstration

that Gamera’s modular and extensible conception is suc-

cessful.

REFERENCES

[1] G. Wiggins, T. Crawford, M. Gale, D. Lewis:

“An Electronic Corpus of Lute Music (ECOLM)”.

http://www.ecolm.org/

[2] M. Droettboom: “The Gamera Project Homepage”.

http://gamera.sourceforge.net/

[3] Homepage of our OTR project:

http://lionel.kr.hsnr.de/˜dalitz/data/projekte/otr/

[4] I. Fujinaga: “Staff Detection and Removal”. In S.

George (editor): Visual Perception of Music Nota-

tion, pp. 1-39, Idea Group, 2004

[5] W. Postl: “Detection of linear oblique structures and

skew scan in digitized documents”. Proc. 8th Int.

Conf. on Pattern Recognition, pp. 687-689, 1986

[6] W.H. press, B.P. Flannery, S.A. Teukolsky, W.T. Vet-

terling: “Numerical Recipes in Pascal”. Cambridge

University Press, 1993

[7] M. Droettboom: “Correcting broken characters in

the recognition of historical printed documents”.

Joint Conference on Digital Libraries, pp. 364-366,

2003

[8] B.V. Dasarathy: “Nearest Neighbor (NN) Norms:

NN Pattern Classification Techniques”. IEEE Com-

puter Society Press, 1991

[9] C. Dalitz: “abctab2ps”.

http://www.lautengesellschaft.de/cdmm/

[10] M. Orphée: “A History of Transcriptions of Lute

Tablature from 1679 to the Present”. The Lute, Jour-

nal of the Lute Society, Volume XLIII, pp. 1-43,

2003

[11] Répertoire international de sources musicales

(RISM), Series A/I: “Single Prints before 1800”.

Bärenreiter, 1971-1981

481

