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ABSTRACT
Common approaches to creating playlists are to randomly
shuffle a collection (e.g. iPod shuffle) or manually select
songs. In this paper we present and evaluate heuristics
to adapt playlists automatically given a song to start with
(seed song) and immediate user feedback.

Instead of rich metadata we use audio-based similar-
ity. The user gives feedback by pressing a skip button
if the user dislikes the current song. Songs similar to
skipped songs are removed, while songs similar to ac-
cepted ones are added to the playlist. We evaluate the
heuristics with hypothetical use cases. For each use case
we assume a specific user behavior (e.g. the user always
skips songs by a particular artist). Our results show that
using audio similarity and simple heuristics it is possible
to drastically reduce the number of necessary skips.

1 INTRODUCTION
There are different ways to create playlists. One extreme
is to very carefully select each piece and the order in
which the pieces are played. Another extreme is to ran-
domly shuffle all pieces in a collection. While the first
approach is very time consuming, the second approach
produces useless results if the collection is very diverse.

In this paper we present an alternative which requires
little user interaction even for very diverse collections.
The goal is to minimize user input and maximize satis-
faction. Ourassumptions are (1) a seed song is given. We
do not tackle the problem of browsing a large collection
to find a song to start with. If more than one song to start
with is given then the task is simplified. (2) We assume
that a skip button is available and easily accessible to the
user. For example, this is the case if the user runs Winamp
while browsing the Internet. (3) Finally, we assume a lazy
user who is willing to sacrifice quality for time. In partic-
ular, we assume all the user is willing to do is press a skip
button if the song currently played is a bad choice.

In this paper we present simple heuristics to dynam-
ically propose the next song to be played in a playlist.
The approach is based on audio similarity and we take the
user’s skipping behavior into account. The idea is to avoid
songs similar to songs which were skipped and focus on
songs similar to accepted ones. We evaluate the heuristics
based on hypothetical use cases.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2005 Queen Mary, University of London

Previous work on playlist generation has partly dealt
with algorithms to efficiently find a playlist which fulfills
given constraints (e.g. [1, 2]). These approaches assume
the existence of rich metadata. A commercial product to
generate playlists from proprietary metadata is available
from Gracenote.1 This “dynamic” playlist generator up-
dates playlists when the music collection is modified.

A conceptually very similar approach to our work is
the internet radio station Last.FM2 which creates a user
profile based on immediate user feedback. Last.FM is
built on collaborative filtering and uses “Love”, “Skip”,
“Ban” buttons as input.

Another approach using immediate user feedback and
rich metadata was presented in [3]. The main difference to
our work is that in our evaluations random shuffling would
completely fail. Furthermore, our heuristics have no pa-
rameters which need to be trained and thus we expect our
approach to be more robust and require less user feedback.

Unlike these previous approaches we do not rely on
metadata or collaborative filtering. Purely audio-based
playlist generation was proposed for example in [5] and
[4]. In [5] the author showed that simply using then near-
est songs to a seed song as a playlist performs relatively
well. In [4] traveling salesman algorithms are used to find
a path through the whole collection.

2 METHOD
At the core of our approach is the audio-based music sim-
ilarity measure. We use a combination of spectral similar-
ity [6, 7], fluctuation patterns [8], and some other descrip-
tors. The details are described in [9].

From a statistical (or machine learning) point of view
it is problematic to use complex models (or learners) with
a high number of parameters to learn user preferences.
The main reason for this is that in an ideal case the num-
ber of negative examples is extremely low (e.g. less than
5) and even the number of positive examples is not very
high (e.g. 20 tracks can fill an hour of music).

To generate the playlists we use the following 4
heuristics. Candidate songs are all songs in the collection
which have not been played (or skipped) yet.

(A) As suggested in [5] then nearest neighbors to
the seed song are played (n = accepted + skipped). This
heuristic creates a static playlist and is the baseline we
want to improve upon.

(B) The candidate song closest to the last song ac-
cepted by the user is played. This is similar to heuristic
A with the only difference that the seed song is always the
last song accepted.

(C) The candidate song closest to any of the accepted
songs is played. Using the minimum distance for recom-

1http://www.gracenote.com/gnproducts/playlist.html
2http://last.fm
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mendations from song sets was proposed in [10].
(D) For each candidate song, letda be the distance

to the nearest accepted, and letds be the distance to the
nearest skipped. Ifda < ds, then add the candidate to
the setS. FromS play the song with smallestda. If S

is empty, then play the candidate song which has the best
(i.e. the lowest)da/ds ratio.

3 EVALUATION
In the hypothetical use cases we assume that the user
wants to listen to one hour of music which is approxi-
mately 20 songs. The number of skips are counted until
these 20 songs are played. Theuse cases (UC) are the
following:

(1) The user wants to listen to songs similar to the
seed. We measure this by equating similarity with genre
membership. Any song outside of the seed’s genre is
skipped.

(2) The user wants to listen to similar music but dis-
likes a particular artist (for not measurable reasons such as
personal taste). To measure this we use the same approach
as for UC-1. An unwanted artist from the seed’s genre (not
the artist of the seed song) is randomly selected. Every
time a song outside the seed’s genre or from the unwanted
artist is played, skip is pressed.

(3) The user’s preferences change over time. We mea-
sure this as follows. Let A be the genre of the seed song
and B a related genre which the user starts to prefer. The
first 5 songs are accepted if they are from genre A. The
next 10 are accepted if they are from either A or B. The
last 5 are accepted if they are from B. We manually se-
lected pairs of genres for this use case. The list of pairs
can be found in Table 3. Unlike UC-1 and UC-2 it is pos-
sible that in UC-3 a state is reached where none of the
candidate songs would be accepted although the number
of accepted is less than 20. In such cases the remaining
songs in the collection are added to the skip count.

For UC-1 and UC-2 the evaluation is run using every
song in the collection as seed. For UC-3 every song in
genre A is used.

One of the biggest problems for our evaluation is that
we do not have enough artists per genre to implement an
artist filter. That is, we do not avoid playing several songs
from the same artist right after each other.

Another issue is that we assume only songs the user
dislikes are skipped. However, if a song is skipped be-
cause, e.g., the user just heard it on the radio (but likes
it otherwise) our heuristics will be mislead. To evaluate
this we could have included randomly pressed skips. To
solve this the user could be given more feedback options.
For example, how long or hard the skip button is pressed
could indicate how dissimilar the next song should be.

3.1 Data

The collection we use contains 2522 tracks from 22
genres (see Table 1 for further statistics). The genres
and the number of tracks per genre are listed in Fig. 2.
The collection has mainly been organized according to
genre/artist/album. Thus, all pieces of an artist are as-
signed to the same genre, which is questionable but com-
mon practice. The genres are user defined and inconsis-

Artists/Genre Tracks/Genre
Genres Artists Tracks Min Max Min Max

22 103 2522 3 6 45 259

Table 1: Statistics of the music collection.

Heuristic Min Median Mean Max
UC-1 A 0 37.0 133.0 2053

B 0 30.0 164.4 2152
C 0 14.0 91.0 1298
D 0 11.0 23.9 425

UC-2 A 0 52.0 174.0 2230
B 0 36.0 241.1 2502
C 0 17.0 116.9 1661
D 0 15.0 32.9 453

Table 2: Number of skips for UC-1 and UC-2.
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Figure 1: Skips per playlist position for UC-1.

tent. In particular, there are two different definitions of
trance. Furthermore, there are overlaps, for example, jazz
and jazz guitar, heavy metal and death metal etc.

3.2 Results

For UC-1 using random shuffle to generate the playlist
would require more than 300 skips in half of the cases
while heuristic A requires less than 37 skips in half of the
cases. Table 2 shows the results for UC-1 and UC-2. The
main observation is that the performance increases from
heuristic A to D. In general, there are a lot of outliers
which is reflected in the large difference between mean
and median. In a few cases almost all songs from the col-
lection are proposed until 20 songs from the seed genre
are in the playlist. Heuristic D has significantly fewer out-
liers. Half of all cases for heuristic D in UC-1 require less
than 11 skips which might almost be acceptable.

Fig. 1 shows that for D/UC-1 there is a large number of
skips after the first song (seed song). Once the system has
a few positive examples the number of skips decreases.
On the other hand, for heuristic A, the number of skips
gradually increases with the playlist position. (Note that
one must be careful when interpreting the mean because it
is strongly influenced by a few outliers.)

Fig. 2 shows that for D/UC-1 some genres work very
well (e.g. jazz guitar or heavy metal - trash), while others
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Heuristic A Heuristic B Heuristic C Heuristic D
Start Goto Median Mean Median Mean Median Mean Median Mean

Euro-Dance Trance 69.0 171.4 36.0 64.9 41.0 69.0 20.0 28.3
Trance Euro-Dance 66.0 149.1 24.0 79.1 6.5 44.4 4.5 8.8
German Hip Hop Hard Core Rap 33.0 61.9 32.0 45.6 31.0 40.7 23.0 28.1
Hard Core Rap German Hip Hop 21.5 32.2 18.0 51.9 16.0 24.2 14.0 16.1
Heavy Metal/Thrash Death Metal 98.5 146.4 54.0 92.5 58.0 61.1 28.0 28.4
Death Metal Heavy Metal/Thrash 14.0 69.2 16.0 53.7 3.0 55.5 3.0 25.7
Bossa Nova Jazz Guitar 68.5 228.1 32.0 118.7 54.0 61.1 22.0 21.3
Jazz Guitar Bossa Nova 21.0 26.7 22.0 21.5 9.0 10.5 6.0 6.2
Jazz Guitar Jazz 116.0 111.3 53.0 75.7 45.0 74.0 18.5 27.3
Jazz Jazz Guitar 512.5 717.0 1286.0 1279.5 311.0 310.8 29.0 41.3
A Cappella Death Metal 1235.0 1230.5 1523.0 1509.9 684.0 676.5 271.0 297
Death Metal A Cappella 1688.0 1647.2 1696.0 1653.9 1186.0 1187.3 350.0 309.2

Table 3: Number of skips for UC-3.

fail (e.g. electronic or downtempo). However, some of the
failures make sense. For example, before 20 pieces from
electronic are played, in average almost 18 pieces from
downtempo are proposed.

Table 3 gives the results for UC-3. As for the other
use cases the performance increases from A to D in most
cases. We have included the pair a capella to death metal
as an extreme to show the limitations (we do not consider
such a transition to be a likely user scenario). In three of
the cases for heuristic D the median seems to be accept-
ably low.

The number of skips depends a lot on the direction of
the transition. For example, moving from jazz guitar to
bossa nova requires, in half of the cases, less than 6 skips.
Moving in the other direction requires almost 3 times as
many skips. This is also reflected in Fig. 2. Specifically,
jazz guitar to bossa nova works well because jazz guitar
is mainly confused with bossa nova. On the other hand
bossa nova is confused with many other genres. The same
can be observed, e.g., for the pair trance and euro-dance.

Fig. 3 shows where skips occur for UC-3 and heuristic
D, and how often each genre was played per playlist po-
sition. In some cases during the transition phase (where
genre A or B are accepted) basically only genre A is
played. When the transition is forced (after the 15th song
in the playlist) the number of skips drastically increases.
In other cases the transition works very nicely. An obvious
direction for further improvement is to include a memory
effect to allow the system to quickly forget previous user
choices. However, preliminary experiments we conducted
in this direction did not show significant improvements.

4 CONCLUSIONS

We have presented an approach to dynamically create
playlists based on the user’s skipping behavior. We evalu-
ated the approach using hypothetical use cases for which
we assume specific behavior patterns. Compared to the
approach suggested in [5], heuristic D reduces the num-
ber of skips drastically. In some of the cases the necessary
number of skips seems low enough for a real world appli-
cation.

The main limitation of our evaluation is that we did not
implement an artist filter (to avoid having a large number
of pieces from the same artist right after each other in a

playlist) due to the small number of artist per genre.
The heuristic depends most of all on the similarity

measure. Any improvements would lead to fewer skips.
However, implementing memory effects (to forget past
decisions of the user) or allowing the similarity measure to
adapt to the user’s behavior are also interesting directions.
For use cases related to changing user preferences a key
issue might be to track the direction of this change. Incor-
porating additional information such as web-based artist
similarity or modeling the user’s context more accurately
(based on data from long term usage) are other options.

Although evaluations based on hypothetical use cases
seems to be sufficient for the current development state,
experiments with humans listeners will be necessary in
the long run.
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Figure 2: Mean number of skips per genre for heuristic D in UC-1. For example, the first line shows how many songs (in
average, computed as the mean) from each genre were skipped for playlists starting with an a capella seed. The number
to the left of the table (e.g. 112) is the number of total tracks in the genre. The number on the right side of the table (4.9)
is the mean of the total number of skips.
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Figure 3: Average skips and genre ratio per playlist position for heuristic D in UC-3. The genre ratio is 0 if only genre
A (the genre of the seed) is played and 1 if only genre B (destination genre) is played. The circle marks the last and first
song which is forced to be from a specific genre.
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