
JAUDIO: A FEATURE EXTRACTION LIBRARY

Daniel McEnnis
Faculty of Music

McGill University
Montreal Canada

daniel.mcennis
@mail.mcgill.ca

Cory McKay
Faculty of Music

McGill University
Montreal Canada
cory.mckay

@mail.mcgill.ca

Ichiro Fujinaga
Faculty of Music

McGill University
Montreal Canada

ich
@music.mcgill.ca

Philippe Depalle
Faculty of Music

McGill University
Montreal Canada

depalle
@music.mcgill.ca

ABSTRACT
jAudio is a new framework for feature extraction designed
to eliminate the duplication of effort in calculating fea-
tures from an audio signal. This system meets the needs
of MIR researchers by providing a library of analysis al-
gorithms that are suitable for a wide array of MIR tasks.
In order to provide these features with a minimal learn-
ing curve, the system implements a GUI that makes the
process of selecting desired features straight forward. A
command-line interface is also provided to manipulate
jAudio via scripting. Furthermore, jAudio provides a
unique method of handling multidimensional features and
a new mechanism for dependency handling to prevent du-
plicate calculations.

The system takes a sequence of audio files as input.
In the GUI, users select the features that they wish to
have extracted—letting jAudio take care of all depen-
dency problems—and either execute directly from the
GUI or save the settings for batch processing. The out-
put is either an ACE XML file or an ARFF file depending
on the user’s preference.

Keywords: Java Audio Environment, Audio Feature
Extraction, Music Information Retrieval.

1 INTRODUCTION
jAudio is a feature extraction system designed to meet the
needs of MIR researchers by providing a collection of fea-
ture extraction algorithms bundled with both an easy-to-
use GUI and a command-line interface. The system ac-
cepts audio files as input and produces either ACE XML
files (McKay et al. 2005) or ARFF files. Furthermore, the
system includes multidimensional features and a new way
to handle dependencies between features.

Extracting high-quality features is of critical impor-
tance for many MIR projects (Fujinaga 1998; Jensen

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2005 Queen Mary, University of London

1999). Since these features are the only information that
a classifier or other interpretive construct has about the
original data, a failure to capture information and patterns
inherent in the signal will result in poor performance, no
matter how good the interpretive layer is.

One such problem is the difficulty in extracting per-
ceptual features such as meter or pitch from a signal.
These features, though useful, are typically not used be-
cause they are generally too complicated to create. This
is particularly true if the main focus of the research is in
other areas, not the creation of new pitch or meter detec-
tion algorithms.

Since features are the sole mechanism by which in-
terpretive layers can gain access to the latent information
of the original data source, having many different fea-
tures is desirable. Especially if feature selection or feature
weighting is used, having a multitude of features permits
the interpretive layer to have as many perspectives on the
incoming data as possible. However, especially if the in-
terpretive layer is the main focus of the researchers’ ef-
forts, creating and maintaining a large array of features is
a significant effort that may not be feasible.

The current state of feature extraction techniques has
some additional difficulties. There is no central repository
of algorithms dedicated to extracting features. This means
that researchers are dependent on often sparse descriptions
from conference proceedings to identify the best features
to obtain for a given topic. Unfortunately, due to space
constraints, these descriptions tend to be terse to the point
of obscurity, greatly increasing the chance that an algo-
rithm may be implemented incorrectly due to a misunder-
standing of a source. jAudio alleviates this problem by
providing a central repository for placing features.

There is also a problem in how the feature extrac-
tors communicate with their interpreters. There has been
some progress made in this field as Weka’s ARFF format
has become a de facto standard (Witten and Frank 1999).
Yet, with the exception of Marsyas (Tzanetakis and Cook
2000), no existing feature extraction system provides their
output data in a standard output format.

More critically, feature extraction source code is either
not made available or is tightly coupled to the classifica-
tion or analysis code. This prevents the reuse of this code
in other contexts, limiting the ability of researchers to ex-
change feature extraction algorithms.

Furthermore, many algorithms for feature extraction

600



are implemented in a platform dependent way that does
not necessarily function properly on computers of another
architecture or sometimes on systems of the same archi-
tecture but different configuration.

Another concern that needs to be addressed is how
easily the feature extraction platform can be extended. A
complicated setup means that few features will be added
by anyone but the maintainers, drastically limiting the use-
fulness of the project.

2 RELATED RESEARCH
Efforts to extract a large number of features in a single ex-
periment have been done before. Papers such as Fujinaga
(1998), Hong (2000), and Jensen (1999) are known for
their large feature collection. However, the creation of li-
braries to avoid duplication of the effort of writing feature
extraction algorithms is a relatively new phenomenon.

2.1 Marsyas

Marsyas by George Tzanetakis is a pioneer in this area.
His system is implemented in C++. The system is both
efficient and open source. Despite being integrated into a
general classification system, Marsyas retains the ability
to output feature extraction data to Weka’s ARFF format.
One drawback is the complicated interface for controlling
the features selected for extraction in the extraction sub-
system (Tzanetakis and Cook 2000).

2.2 CLAM

CLAM is produced by the Music Technology Group at
Pompeu Fabra University (Amatrain et al. 2002). The sys-
tem is an analysis/synthesis system and is implemented in
C++. While a good general system with a good GUI user
interface, the system was not intended for extracting fea-
tures for classification problems.

2.3 M2K

M2K is built upon the D2K data mining software devel-
oped at NCSA at the University of Illinois (Downie et al.
2004). The system utilizes the GUI architecture of D2K
patches—a very intuitive method for building large hier-
archies of feature sets. Unfortunately, the system is cur-
rently in an alpha state. Further complicating this diffi-
culty is the commercial license of the underlying D2K sys-
tem. While M2K is available under a free license, the D2K
system is only available for academic use. This makes the
system more difficult to obtain by researchers outside the
United States and raises the possibility of licensing prob-
lems for those researchers whose work with M2K blurs
the edge between a research tool and a commercial open-
source application.

2.4 Maaate

Maaate is produced by the Commonwealth Scientific and
Industrial Research Organization. It was built primarily to
extract features from MPEG 1 audio rather than uncom-
pressed audio. While it has a GUI front end, the GUI

is geared towards visualization rather than controlling the
feature extraction process (Pfeiffer et al. 2005).

3 DESIGN DECISIONS
In order to address the issues introduced in Section 1, it
was necessary to make a number of design decisions that
shaped jAudio.

3.1 Java based

jAudio was written in Java in order to capitalize on Java’s
cross-platform portability and design advantages. A cus-
tom low-level audio layer was implemented in order to
supplement Java’s limited core audio support and allow
those writing jAudio features to deal directly with arrays
of sample values rather than needing to concern them-
selves directly with low-level issues such as buffering and
format conversions.

3.2 XML and Weka output

jAudio supports multiple output formats, including both
the native XML format of the ACE (Autonomous Classi-
fier Engine) system, which is a framework for optimizing
classifiers (McKay et al. 2005), and the ARFF format used
by the popular Weka analysis toolkit (Witten and Frank
1999). This permits utilizing both the ACE environment
for classification problems and providing a more estab-
lished format. Export to ARFF is accomplished by treat-
ing all multidimensional features as collections of individ-
ual features.

3.3 Handling dependencies

In order to reduce the complexity of calculations, it is of-
ten advantageous to reuse the results of an earlier calcu-
lation in other modules. jAudio provides a simple way
for a feature class to declare which features it requires in
order to be calculated. An example is the magnitude spec-
trum of a signal. It is used by a number of features, but
only needs to be calculated once. Just before execution
begins, jAudio reorders the execution of feature calcula-
tions such that every feature’s calculation is executed only
after all of its dependencies have been executed. Further-
more, unlike any other system, the user need not know
the dependencies of the features selected. Any feature se-
lected for output that has dependencies will automatically
and silently calculate dependent features as needed with-
out replication.

3.4 Support for multidimensional features

jAudio has the capacity to accept features that provide an
arbitrary number of dimensions. This is an extremely use-
ful way to group related features calculated at once such as
MFCC. This is in contrast to the ARFF format from Weka
where all features are unidimensional. Furthermore, the
dimensionality of each feature is exported. This permits
derivatives and other metafeatures to have the same num-
ber of dimensions as the feature they are calculated from,
even though the same code is used for all features.

601



Figure 1: Screenshot of jAudio GUI.

3.5 Intuitive interface

jAudio permits control of downsampling of the input sig-
nal, signal normalization, window size, window overlap,
and control of which features are extracted and saved with
an easy to use GUI (See Figure 1). The GUI also per-
mits users to configure settings and save them for batch
processing.

3.6 License

All source code is publicly available on the Internet
(http://coltrane.music.mcgill.ca/ACE) under the Lesser
GNU Public License (LGPL).

3.7 Extensibility

Effort was taken to make it as easy as possible to add
new features and associated documentation to the system.
An abstract class is provided that includes all the features
needed to implement a feature.

3.8 Metafeatures

Metafeatures are templates that can be applied against any
feature to create new features. Examples of metafeatures
include Derivative, Mean, and Standard Deviation. Each
of these metafeatures are automatically applied to all fea-
tures without the user needing to explicitly create these
derivative features.

4 IMPLEMENTED FEATURES
There are 27 distinct features implemented in jAudio. The
following is a non-exhaustive list.

• Zero Crossing

Zero Crossing is calculated by counting the num-
ber of times that the time domain signal crosses zero
within a given window. ’Crossing zero’ is defined as
(xn−1 < 0 and xn > 0) or (xn−1 > 0 and xn < 0)
or (xn−1 6= 0 and xn = 0) .

• RMS

RMS is calculated on a per window basis. It is de-
fined by the equation:

RMS =

√∑N
n x2

n

N
(1)

where N is the total number of samples provided in
the time domain. RMS is used to calculate the am-
plitude of a window.

• Fraction of Low Amplitude Frames

This feature is defined as the fraction of previous
windows whose RMS is less than the mean RMS.
This gives an indication of the variability of the am-
plitude of windows.

• Spectral Flux

Spectral Flux is defined as the spectral correlation be-
tween adjacent windows (McAdams 1999). It is of-
ten used as an indication of the degree of change of
the spectrum between windows.

• Spectral Rolloff

Spectral rolloff is defined as the frequency where
85% of the energy in the spectrum is below this point.

602



It is often used as an indicator of the skew of the fre-
quencies present in a window.

• Compactness
Compactness is closely related to Spectral Smooth-
ness as defined by McAdams (1999). The difference
is that instead of summing over partials, compactness
sums over frequency bins of an FFT. This provides an
indication of the noisiness of the signal.

• Method of Moments
This feature consists of the first five statistical mo-
ments of the spectrograph. This includes the area (ze-
roth order), mean (first order), Power Spectrum Den-
sity (second order), Spectral Skew (third order), and
Spectral Kurtosis (fourth order). These features de-
scribe the shape of the spectrograph of a given win-
dow (Fujinaga 1997).

• 2D Method of Moments
This feature treats a series of frames of spectral data
as a two dimensional image which are then analyzed
using two-dimensional method of moments (Fuji-
naga 1997). This gives a description of the spectro-
graph, including its changes, over a relatively short
time frame.

• MFCC
Mel-Frequency Cepstral Coefficients (MFCCs) are
calculated according to the formula by Bogert et al.
(1963). The calculations are implemented here using
the code taken from the Orange Cow voice recogni-
tion project (Su et al. 2005). This is useful for de-
scribing a spectrum window.

• Beat Histogram
This feature autocorrelates the RMS for each bin in
order to construct a histogram representing rhyth-
mic regularities. This is used as a base feature for
determining best tempo match (Scheirer and Slaney
1997).

5 CONCLUSIONS
jAudio provides a comprehensive solution to the problem
of the duplication of work in programming feature extrac-
tion. This system permits general use of a large number
of features in a fashion that is both easy to use and ex-
tensible. The GUI permits the system to be easily config-
ured with minimal effort and the command-line interface
permits easy batch processing. The system also provides
a central repository for the storing of feature algorithms
with an unambiguous meaning with output that can be
read by either ACE or Weka.

6 FUTURE WORK
The set of features provided by jAudio is by no means
comprehensive. Numerous additional features remain to
be added. In particular, the system needs an implemen-
tation of LPC and the ability to process multiple window
sizes concurrently.

Also, if the license issues can be resolved, we would
like to merge our development efforts into the M2K
project. This would allow the project to take advantage
of the extensive GUI support while maintaining the exist-
ing benefits of jAudio.

REFERENCES
X. Amatrain, P. Arumi, and M. Ramirez. Clam: Yet an-

other library for audio and music processing? In Pro-
ceedings of the ACM Conference on Object Oriented
Programming, Systems, and Applications, 2002. 22–3.

B. Bogert, M. Healy, and M. Healy. The quefrency
alanysis of time series for echoes: cepstrum, pseudo-
autocovariance, cross-cepstrum, and saphe-cracking. In
Proceedings of the Symposium Time Series Analysis,
1963. 209–43.

S. Downie, J. Futrelle, and D. Tcheng. The international
music information retrieval systems evaluation labora-
tory. International Conference on Music Information
Retrieval, 2004. 9–14.

I. Fujinaga. Machine recognition of timbre using steady-
state tone of acoustic musical instruments. In Proceed-
ings of the International Computer Music Conference,
1998. 207–10.

I. Fujinaga. Adaptive optical music recognition. PhD the-
sis, McGill University, 1997.

T. Hong. Salient feature extraction of musical instrument
signals. Master’s thesis, Dartmouth College, 2000.

K. Jensen. Timbre models of musical sounds. PhD thesis,
Kobenhavens Universitet, 1999.

S. McAdams. Perspectives on the contribution of timbre
to musical structure. Computer Music Journal, 23:85–
102, 1999.

C. McKay, D. McEnnis, R. Fiebrink, and I. Fujinaga.
Ace: A framework for optomizing music classifica-
tion. International Conference on Music Information
Retrieval, 2005.

S. Pfeiffer, C. Parker, and T. Vincent. Maate, 2005. URL
http://www.cmis.csiro.au/maaate/. [Ac-
cessed April 14, 2005].

E. Scheirer and M. Slaney. Construction and evaluation
of a robust multi-feature speech/music discriminator. In
Proceedings of the International Conference on Acous-
tics, Speech, and Signal Processing, 1997.

C. Su, K. Fung, and A. Leonov. Oc volume, 2005. URL
http://ocvolume.sourceforge.net/. [Ac-
cessed April 14, 2005].

G. Tzanetakis and P. Cook. Marsyas: A framework for
audio analysis. Organized Sound, 10:293–302, 2000.

I. Witten and E. Frank. Data mining: Practical machine
learning tools and techniques with Java implementa-
tions. San Fransisco: Morgan Kaufmann, 1999.

603




