
ON TECHNIQUES FOR CONTENT-BASED VISUAL ANNOTATION TO
AID INTRA-TRACK MUSIC NAVIGATION

Gavin Wood
University of York
York YO10 5DD
United Kingdom

gav@cs.york.ac.uk

Simon O’Keefe
University of York
York YO10 5DD
United Kingdom

sok@cs.york.ac.uk

ABSTRACT
Despite the fact that people are increasingly listening to
music electronically, the core interface of the common
tools for playing the music have had very little improve-
ment. In particular the tools for intra-track navigation
have remained basically static, not taking advantage of re-
cent studies into the field of audio jisting, summarising
and segmentation.

We introduce a novel mechanism for musical audio
linear summarisation and modify a widely used open
source media player to utilise several music information
retrieval techniques directly in the graphical user inter-
face. With a broad range of music, we provide a quali-
tative discussion on several techniques used for content-
based music information retrieval and perform quantita-
tive investigation to their usefulness.

1 INTRODUCTION
In recent years the techniques for content based analysis of
musical audio have improved dramatically. Moore’s law
continues steadily to provide software with ever-greater
resources with respect to processing power, and the ex-
tra storage available for media has meant that we are able
to store our entire music collection for digital playback.
Graphical interfaces to media players have become more
elaborate and most mainstream software now supports
some sort of visualisation of the music as it plays.1

In the original generation of the graphical media
player, a typical user interface feature would be the “time
bar”. This allowed the user to visualise how far through
the current track they were, in relation to the length of the
track. This was, in many ways, similar to the progress
bar in order to show the user how much of a particular
task is completed, with the exception that time bars may

1Though in many cases the correspondence between audio
and video leaves much to be desired.
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be used to directly navigate through a track by clicking
some way along it. The player would resume playing at
the corresponding point through the track. However, as a
navigation tool its use is limited due to the fact that the
user had to know in advance the approximate place on the
bar to deliver the wanted moment of the track.

In order to improve the usefulness of this “time bar”,
some extra information must be added to it, providing the
user with some visual cues. This allows the user to better
guess which point along it maps to the particular moment
they are trying to find. Many studies (e.g., Bocker et al.,
1986) have shown visual cues to be a simple and effective
means to convey information to the user without confus-
ing a novice or distracting one already familiar. We call
this visual annotation a “mood bar”, referring to the vary-
ing shades to depict the music content.

There is work aplenty in the field of IR with respect to
analysing and classifying individual segments of musical
audio, perhaps with a view to archiving, retrieval, group-
ing, large-scale exploration and browsing. Extensive work
has been carried out into forming the user interface to deal
with this functionality. Comparatively little has been done
to the interface once the necessary segment has been lo-
cated and is ready to be played. One might assume that
once the user has their segment of data—be it a music
track, a monolithic compilation (e.g. live performance) or
perhaps a radio broadcast—they are happy to have it play
throughout.

The concept of user-directed navigation is essential to
this work. We set out not to produce a visual annotation by
which some (however small) absolute truth may be gained
from one single sample. Instead we take a more holistic
approach and free ourselves from the constraint that the
annotation must mean something absolute and concrete.
We allow our visualisation to take on any abstract form,
and judge performance as to what, as a human, we are able
to ascertain from the final depiction. We go on to measure
how useful these depictions are for searching tasks with a
broad range of music.

The task is an acute acid test; i.e. we give the partici-
pants an absolute minimum of learning time. As such the
results will heavily favour the annotation methods with
more obvious visual cues to those with a more complex
visual representation. This is because we wish to test real-
istic casual usage; people should not have to suffer a sig-
nificant learning curve to use a media player. In particular

58



Figure 1: The amaroK music player with the moodbar
operational.

we test whether the addition of colour improves perfor-
mance when the participants have no prior experience of
the new interface.

1.1 Related Work

Little work has been openly published specifically regard-
ing intra-track navigation. The most connected work to
that presented here is by Tzanetakis and Cook (2000a),
who have discussed the Marsyas augmented sound editor.
This is a basic sound editor that can “colour-in” the edited
waveform according to some particular acoustic charac-
teristics. Apparently, this line of research was not contin-
ued any further since it remains around only in the original
niche application (the Marsyas augmented sound editor).
The technology presented here is comparative; however
we evaluate it in more depth and with user studies. We
also utilise several different methods for calculating the
colour and present a novel method. Tzanetakis and Cook
(2000b) later provided some insight into segmentation and
possible methods in their article on Marsyas.

There is significant literature in the related arena of
context based segmentation of audio; Raphael (1999) has
presented a segmentation method with Markov models.
Foote (1999), then later in Foote and Cooper (2003) and
Cooper and Foote (2003), present a mechanism for calcu-
lating musical novelty, with a view to segmentation and
jisting. The work doesn’t go so far as to quantitatively
evaluate the usefulness, instead presenting the techniques
and discussing the output.

Couprie (2004) has given a most interesting discussion
on possible intuitive graphical representations of music.
He suggests the display is made of discrete elements rather
than a continuous form (that might be easier when work-
ing with source audio). The discussion does argue well
that navigational aids are helpful in numerous situations.
Brazil et al. (2002) discussed intra-collection browsing
through track features as did Tzanetakis (2003) for mu-
sical audio. A similar problem was approached by Black-
burn and DeRoure (1998) for MIDI navigation between
tracks using pitch contours.

2 USER-INTERFACE DESIGN
Following the principle of least surprise, we changed the
playback interface as little as possible. The media player

we set about to augment, amaroK (2005), already pro-
vided a highly intuitive interface with the now-standard
track slider bar. In amaroK’s case a triangular pointer
scrolls across the top of the bar denoting the current posi-
tion of the player through the track. The only change we
made to the interface was to have the internal portion of
the bar coloured (with vertical lines) according to some
analysis metric. The colour changes along the x-axis,
which represents time. Because we allowed ourselves use
of colour each point on the x axis corresponds to a 3D
value using the RGB components of the colour. As before
the user is free to click anywhere on the bar to warp the
player to the corresponding position in the song.

3 ANALYSIS TECHNIQUES
Several main techniques are used in order to populate
the “mood bar”. These techniques can be split into two
groups—those that result in only one value and those that
result in three values. Those that result in one value were
transformed into a colour by using it as the luminosity of
a shade of gray. Those giving three values were trans-
formed into a colour by assigning each value to either the
red, green or blue component.

The spectra were calculated by using a series of FFTs
over the signal. The window size used was 1024 samples,
with a 50% overlap. With the input signal being at the CD
standard 44100Hz, this puts the lowest frequency to be de-
tected at around 43Hz with windows being around 11ms
apart. The stereo signals were first downmixed into mono,
to prevent any problematic stereo seperation effects.

A psychoacoustic variant of the mechanisms was used,
where the spectra were first summed into the critical bands
on the Bark scale. This significantly cuts down on the
computation cost in many areas since the 512 bands of
the FFT output is reduced to only 24 critical bands. Ini-
tial experimentation backed up by previous studies (such
as Wood and O’Keefe, 2003) showed that it made little
discernable difference to the final performance.

Also, the full gamut of output for the track was nor-
malised before being changed into a colour. The normali-
sation technique used was a simple min/max stretch given
by:

valuenormalised ≡
(value− valuemin)

valuemax − valuemin

3.1 Spectral Magnitude

We used the spectral magnitude calculation to provide us
with a 1 dimensional representation of the audio track:

Because of its simplicity it was used as a benchmark
to which other techniques could be compared.

3.2 Novelty

Foote (1999) first detailed the “novelty” score: It provides
a value determined by the cross dissimilarity of the por-

59



tions of signal before and after the moment in time, as
shown in the workflow diagram:

It relies upon a prior abstraction of the signal known
as a self-similarity matrix, which is calculated simply by
evaluating the similarity of the signal to itself at varying
intervals (given by x− y). The similarity between the two
signals is the cosine of the angle between the two spectra
when expressed as vectors, as suggested in the literature.

DC(Sx,Sy) ≡
Sx • Sy

‖Sx‖ ‖Sy‖

where S is the spectrum in question.
A “checkerboard” weighting is applied to the matrix

with a Guassian taper weighting and the values summed.
This is the novelty score of the moment at the centre of
the input series of spectra. The spectra were calculated in
the same manner as the technique above. The kernel (with
the Guassian taper) is given by:

K(x, y) ≡

{

G(x, y), (x > 0) = (y > 0)
−G(x, y), (x > 0) 6= (y > 0)

where

G(x, y) ≡ Gaussian(‖

(

2x

s
,
2y

s

)

‖)

Where x and y both fall in the range [− s
2
, s

2
] and the

kernel matrix is of width s.
The size of the self-similarity matrix and accompa-

nying checkerboard kernel were experimented with and
qualitatively evaluated. We found a value of around 128
spectra (1.49 seconds) provided a good balance between
time precision and larger scale feature presentation. Fig-
ure 4 demonstrates the differences in matrix size on sev-
eral tracks.

3.3 Rhythm Magnitude

The rhythm magnitude is a novel technique to deliver the
“rhythmicity” of audio at a particular point. It is calcu-
lated by using the rhythm spectrum (also known as beat
spectrum) as a vector and taking its magnitude:

We use the algorithm proposed by Foote (1999) for
calculating the rhythm spectra, which involves populat-
ing a self-similarity matrix and summing across the super-
diagonals.

B(l) ≡

s−l
∑

k=0

M(k, k + l)

where s is the size of the self-similarity matrix M .
Tzanetakis and Cook (2000a) have discussed other tech-
niques such as the beat histogram.

A higher value (i.e. lighter shade) is caused by hav-
ing more power in the rhythm spectrum. A higher lag-
correlation denotes a stronger rhythm which will cause a
lighter shade to be output. If there is little correlation,
or it is compromised between two successive and unique
rhythms then it should have a lower overall power and thus
be darker in shade.

3.4 Bandwise Spectral Magnitude

We devised the spectral magnitude ratio metric as a novel
way to introduce colour into the mood bar. Part of the pre-
cessing pipeline is split into three separate channels for
red, green and blue respectively. The point at which the
split takes place is directly after the Bark critical band-
ing; here we take the 24 bands and split them into 3 8-
band sub spectra. Each spectra is then used as an 8-
dimensional vector to which the magnitude is calculated
(as the Euclidean distance from 0). These magnitudes
are normalised across the track and used as each of a red,
green and blue component of the final colour:

The hue of the colour should therefore be an indica-
tion of the “brightness” of the sound. A more red hue will
denote more power in the low frequency portion. A more
green hue denotes more mid-range content and a bluer hue
would denote high-range. The lightness denotes overall
power as in the standard spectral magnitude measurement.
Finally the saturation of the colour would denote the bal-
ance of power in the spectrum. A spectrum that contains
much of its power in a particular place should give rise to
a very saturated colour, since it is likely the power will all
be engulfed into one of the three subspectra.

3.5 Bandwise Rhythm Magnitude

As before, this is a extension to the standard rhythm mag-
nitude technique done to provide colour. The output of
the critical banding is split into three subspectra, a rhythm
magnitude for each one is found. Each are normalised in-
dividually and used as their corresponding red/green/blue
component in the final colour.

The brightness of the colour relates to the simplicity of
the rhythm at that point, whereas the hue describes where
in the spectrum that simplicity lies; if the rhythmic sim-
plicity is most affected by voices in the upper part of the
frequency spectrum, the hue will be more purple, in the
lower part and the hue will be more “orangey”.

The work flow diagram for the bandwise rhythm mag-
nitude technique follows:
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Figure 2: The track Green Onions by Booker T. and the
MG’s displayed with the metrics (a) spectral magnitude
and (b) bandwise spectral magnitude.

4 IMPLEMENTATION
All signal processing code was implemented under the
open source Exscalibar framework for audio signal infor-
mation retrieval using the Geddei library. As such it took
only one hour for the signal processing part to be pro-
grammed to completion. Due to the transparent and effi-
cient concurrency that the Geddei provides, all code de-
veloped was efficient and concurrent ready to take maxi-
mum advantage of dual-core processors, hyper-threading,
SMP and other forms of hardware parallelism. More in-
formation can be found at the project website (Exscalibar,
2005).

The open source media player amaroK was used as
the mainstream media player on which to add the func-
tionality. It is an advanced music player for use under the
Unix desktop environment KDE. Despite being relatively
young, it is currently used by many in the Linux commu-
nity, having had around 50,000 downloads in total from its
site. It was chosen due to its usable interface, its empha-
sis on new technology and the quality of the source code.
The code changes necessary to make it work alongside the
processing software and display the mood bar took around
two hours in total.

In many instances the data generated from the IR tech-
niques would not fit completely into the limited space for
the slider bar in amaroK. In these cases all points that
would be in any given pixel’s space were simply averaged;
this was then used for that pixel’s colour.

5 EVALUATION
5.1 Discussion

5.1.1 Bandwise Spectral Magnitude

In many instances the addition of colour to the spectral
magnitude display appears to much better describe the
music and allow more and easier discerning of particu-
lar features in the track. The well known jazz track Green
Onions is shown in figure 2. The bandwise variant (b)
clearly identifies where the funk guitar can be heard in
three parts (30s, 1:10 to 1.50 and 2:35 onwards) where
the original version (a) does not. This is represented by

Figure 3: The track Keep Hope Alive by The Crystal
Method displayed with the metrics (a) spectral magnitude
and (b) bandwise spectral magnitude.

Figure 4: The track Fantasia on Greensleeves by Solisti di
Zagreb displayed with the metrics (a) spectral magnitude
and novelty with a kernel size of (b) 92ms, (c) 185ms, (d)
371ms, (e) 743ms, (f) 1.49s, (g) 2.97s and (h) 5.94s.

the thin highlights (of a turquoise hue), especially evident
between 1:30 and 1:50, where the guitar steps up a key.

The track Keep Hope Alive, shown in figure 3 gives
an even greater demonstration of the difference between
the bandwise magnitude and the basic version. For those
unfamiliar with this particular track, it is a complex
piece of progressive techno music, which for the most
part switches between two moods (at approximately 0:48,
1:21, 2:08, 2:44, 3:35, 4:23 and 5:41). The track is gener-
ally “loud”, regardless of the mood it is in (the quiet bits
are found when it changes between them).

Without the use of colour, as in the original variant, the
only parts of the track that are identifyable are the bridges
where the loudness dies down for some time; these appear
as darker spots, such as at 2:00, 3:30 and 5:40. The moods
themselves are virtually indistinguishable. The bandwise
version (b) is able to distinguish between both portions
allowing the user to better separate the parts; even in this
desaturated image, the difference is pronounced.

5.1.2 Novelty

The novelty algorithm, due to the fact it determines a value
for each particular moment by using some number of sec-
onds’ data around it, means that it will have less temporal
precision. The amount of precision can be controlled by
the kernel size. Figure 4 shows a rendition of the well
known theme Greensleeves with varying kernel sizes. As
is discussed later, the processing required for the very
large kernel sizes (i.e. over 128) results considerably more
processing time. For instance (g) and (h) take respectively
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Figure 5: The track Time is the Enemy by Quantic dis-
played with the metrics (a) spectral magnitude and rhythm
magnitude interlaced with bandwise rhythm magnitude
with a rhythm spectrum formed from a matrix of size (b/c)
371ms, (d/e) 743ms, (f/g) 1.49s.

33% and 100% longer to compute than (f).
The novelty output is visibly different to the spectral

magnitude, since it is one level of indirection away; rather
than showing the track directly and allowing the user to
determine when the metric changes enough to denote a
feature, it instead shows the changes directly, essentially
providing a differential view.

The performance of the metric is however quite inter-
esting; the start of the track, which takes place between
20 to 30 seconds into the track is detected at drastically
different times by different kernel widths. (g) and (h) un-
dershoot and have their main strokes at around 23 seconds
in. (f) is less clear and has several strokes around the time
(accurate, if not precise). The second start to the main
theme at 3:05 to 3:10 is well depicted by (e) to (h). The
change in theme at 1:16 and 3:07 is also clear in (e) to
(h). (f) to (h) all picked up on the key change at 4:00. We
finally picked (f) as a good compromise between visual
clarity and processing needed.

5.1.3 Rhythm Magnitude

Like the novelty algorithm, we can already deduce that the
rhythm magnitude metric will have less time precision,
since each value it produces is based upon a number of
spectra from either side of the moment in question. The
number of spectra used, and thus the imprecision of the
metric is equivalent to the number of bands of the rhythm
spectrum (or the cardinality of the vector we measure).
Determining the optimum size of the spectrum is rather
a black art; a smaller size results in better time precision
and less processing. A larger size should allow higher-
level features to be captured.

Figure 5 depicts the track Time is the Enemy, a
grandiose, if slightly repetitive piece of electronic music.
In the figure, the top row (a) is the basic spectral mag-
nitude of the track, and we can easily pick out the two
sections of the track with the gap at 1:56 to 2:01. Aside
from the start and finish, little else is visible.

Looking at the rhythm magnitude depictions (b), (d)
and (f), we can see that the start of the track isn’t nearly
as uninteresting as (a) makes out. Clearly visible are the

Figure 6: The track They’re Hanging Me Tonight by
Red Snapper displayed with the metrics (a) spectral mag-
nitude, (b) bandwise spectral magnitude, and bandwise
rhythm magnitude with rhythm spectrum formed from a
matrix of size (c) 92ms, (d) 185ms, (e) 371ms, (f) 743ms,
(g) 1.49s and (h) 2.97s.

four echoey repetitions of a theme. Arguably we could
also make out the frequency and strength of the vertical
bars changes in each of the two halves. This can be seen
at approximately 1:07 and then in the other half at about
2:45; these relate to the change in theme each half goes
through.

Comparing (b) to (f), between which the size of the
rhythm spectrum increased by a factor of 4, we can see
roughly the same features are visible, though in (f) they
appear to be better defined, with less overall noise; it
would appear that the time precision (with this track, at
least) is negligible.

5.1.4 Bandwise Rhythm Magnitude

In figure 5 we can consider the differences between the
initial method and the bandwise variant. All the bandwise
variants are better able to depict the bridge at 1:55 to 2:00
and clearly distinguish between the initial 20 seconds and
elsewhere in the track with the extreme change of hue “or-
angey” green to cyan, red and blue. However (e) with a
matrix size of 743ms appears on the whole the best, push-
ing cyan strokes into the first portion of each half and then
magenta strokes into the latter portion.

Figure 6 depicts the track They’re Hanging Me
Tonight, a short electronic-acoustic symphonic (or per-
haps cacophonic) piece. There are numerous instruments
in the track, and sampling is used considerably to make
the track quite complex listening. The basic spectral mag-
nitude (a) doesn’t really show a lot of information other
than the rough start and finish times (around 1:15, with
breaks at 2:40 and 4:10, finishing at 5:40).

The bandwise spectral magnitude (b) helps distinguish
a little more; we see a large cyan bar at 4:05 where a gui-
tar takes over for 10 seconds before the mellower bridge
is reached. However due to the fact the track is loud at
most parts anyway, despite the music differences, we see
a largely monotonic picture.

When we utilise the bandwise rhythm magnitude, we
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Figure 7: The total CPU time spent analysing the audio
data in order to provide the relevant visualisation. Tim-
ing conducted on Intel Pentium-M 1.7GHz system with 512MB
RAM on 171s of audio.

see a different picture. In this instance two portions of the
track that used to be quite indistinguishable (from 1:15 to
2:35 and then from 2:45 to around 4:00) are now read-
ily identifyable as green and dark red respectively. Even
more, the portions can be re-identified later on in the track
at 4:45 to 5:00 (green) and 5:00 to 5:35 (dark red). The
initial 45 seconds of the track, which appears as a con-
stant very dark grey in the both (a) and (b) has a bright
pink/yellow/cyan hue which changes to dull green, and
then again to dark purple. The first three hue changes
don’t appear to correspond to anything useful in the mu-
sic, however the latter two changes correspond precisely
to the addition one and then another repeating samples.

Varying the matrix size between 100ms to 1.5s gives
somewhat different output. The visual features become
clearer and less noisy, though problematic “red herrings”
(like the meaningless hue changes early on in the track)
also become better defined. The processing time also in-
creases significantly as is shown later. A good compro-
mise appears to be with a matrix size of 64 or 128 samples,
which correspond to 743ms and 1.49s respectively.

5.2 Computational Performance

From figure 7 we can see that all methods that rely upon
a self-similarity kernel are O(n) where n is the size of
the kernel. The bandwise rhythm magnitude takes around
twice as long to compute for a given kernel size than ei-
ther of the other two non-bandwise matrix-based methods.
The non-matrix based measures were shown as a baseline
only.

We can see that with modern hardware, and choosing
a reasonable size of matrix, computing the annotation for
a given audio track would be quite trivial. This could be
done either on-demand, having the annotation computed
on play and displayed a few seconds into the track or per-
haps precomputed (as we did in this study) so that the an-
notation is stored ready for immediate use.

5.3 User Study

For the user study, we attempted to best simulate prac-
tical and real-world conditions, rather than previous ex-
periments where we focused mainly on mathematical
tractability. We initially selected five tracks from a rea-
sonably broad range of music. The tracks were selected
to give a good range of different types of music and of
different difficulties of problem. Tracks were chosen for
their interesting features that would best test the systems.
Mood changes, both subtle and blunt, instrument changes,
vocal changes and rhythm diversity are among the features
we attempted to utilise to best examine the systems. Table
1 shows the tracks that were chosen.

Track Genre Times
(1) D. McMurray Walk in the Night Jazz 14
Reasonable, consistant beat structure and loudness. Min-
imally defined transitions.
(2) Muse Plug In Baby Rock 9
Simple rock ballad with clear verse/chorus structure.
(3) Shivaree Goodnight Moon Pop 8
Fluid pop song with little beat structure and hazy
verse/chorus structure.
(4) Plaid Prague Radio Abstract 6
Structurally complex, highly dynamic with multiple
moods and well defined beats.
(5) Crystal Method Keep Hope Alive Dance 13
Structurally simple, well defined beats, consistently loud,
few moods.

Table 1: The five tracks chosen for the user study, their
respective genres and the number of significant changes.

5.3.1 Method

We formed a base truth about our data by allowing a “mu-
sic lover” to dictate where in each track the main musical
changes took place. Around 7 such points were allocated
to each track. To prevent the effects of suggestion the indi-
vidual who was given this task was not previously subject
to any annotation of the tracks in question. When listening
to the tracks, no visualisation at all was provided.

With our base truth established, we conducted the
study proper. We conducted the study with 18 subjects,
each subject was given five trials—a trial for each of the
five tracks. We rotated through each of the five analysis
techniques and a control with no annotation.

Each subject was given an initial period of training
(some required more than others), until they felt famil-
iar with the controls of the player. Aside from getting to
grips with the “look and feel” of the application, they were
given no specific information on the mood bar algorithms.
For each trial, the subject was given 60 seconds with the
player incorporating the given analysis technique with the
track loaded. They were allowed to skip back and forth
through the track at will, and could utilise the mood bar
as they saw fit. Their task was to find each of the times
where the music “changed” most. When the minute was
up, the music was stopped and they had to finish writing.
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5.3.2 User Commentry

The overall feeling of those interviewed was that they pre-
ferred the spectral magnitude visualisations over any of
the others. Having utilised all five of the methods, many
also indicated that they intuitively related the intensity of
a point with the loudness at that point. Some went on to
suggest that they would then intuitively relate the colour
of a point with any instruments playing at that point. Only
one candidate suggested that brighter parts in the visuali-
sation might mean increased dynamics and otherwise less
constancy.

The standard rhythm magnitude measure as well as
the novelty measure were generally disliked. Specific
comments were “daunting” and “less predictable”. The
general feeling was that differential measurement (ala
novelty) was unsuitable for intuitive learning; people
expected to see “chunks” of similar sounding portions
of time, rather than specific points at which the music
changed. Those who commented felt that the rhythm mag-
nitude measure simply looked overly populated and ex-
cessively contrasting, and thus determined it too “daunt-
ing” for general use.

Cosmetically almost all people preferred colour over
monochromatic visualisations (one even went so far as
to say it was “pretty”). The majority of those suggested
that they found colour to be the better visualisation in re-
spect to usability also. They found it “easier to distin-
guish”, and “more informative”. The opinion of colour
in the bandwise rhythm magnitude was somewhat more
divided. While nobody made it out to be worse that the
mono-chrome variant, most favoured the look of the band-
wise spectral magnitude, finding the rhythm magnitude
less well defined.

As for usability and comfort, the participants were
quite polarised on their opinions as to whether adding
colour was more helpful in the experiment. While some
decided that it gave them more information and thus was
more useful, others felt the addition of colour increased
the learning curve too much. Most went on to suggest that
perhaps, given enough time to learn, the colour might be
better eventually anyway.

One participant suggested the three colour compo-
nents used to create the colour form the low, mid and high
portions of the spectrum be switched. Apparently they
expected redder hues to relate to “warmer” (i.e. bassier)
sounds while bluer hues related to harsher, sharper (pre-
sumably higher) sounds.

5.3.3 Quantitative Results

The score for each candidate was computed simply by
summing the number of times they gave which fell within
3 seconds of a time from our ground-truth. In order to
prevent the results for those that were better overall from
biasing the general trend, every candidates score was zero-
mean normalised. The means and standard deviations of
the scores for each analysis method taken over all the trials
conducted are presented in figure 8.

From the figure we can see that the best two methods
were clearly the two based upon the spectral magnitude.
Their means are far too close to distinguish which was
actually better though the bandwise variant had a higher

Ban
dw

ise
 R

hy
th

m
 M

ag
.

Con
tro

l (
Blin

d)

Ban
dw

ise
 S

pe
ctr

al 
M

ag
.

Rhy
th

m
 M

ag
.

Nov
elt

y

Spe
ctr

al 
M

ag
.

-1.5 -1 -0.5  0  0.5  1  1.5
Normalised Score

Figure 8: Mean and σ of the score of each analysis
method.

Track
Method 1 2 3 4 5

Control
q u q t s

Spectral Mag.
u t u y t

Novelty
t s t s p

Rhythm Mag.
t r p q v

Bandwise Spectral Mag.
q t t y x

Bandwise Rhythm Mag.
r s s t u

Figure 9: Method results on a track by track basis. Larger
is higher score.

variance suggesting that its use was somewhat changeable
depending upon the person using it and/or the type of track
being used upon.

The bandwise rhythm magnitude far outperforms the
rhythm magnitude method, increasing in both mean score
and constancy. The novelty method was barely different to
the control (blind) trials, and the basic rhythm magnitude
slightly worse. This suggests that the false positives pro-
vided by these annotations was highly detrimental to their
overall usefullness, and in the case of rhythm magnitude
possibly caused more harm than good.

Though the mean of the bandwise rhythm magnitude
is somewhat higher than that of the control, the variances
are so high that the results lose statistical significance.
Further tests would need to be conducted to determine
what degree of usefullness, if any, the metric provided
over the control.

From figure 9 we can see matrix showing how each
method performed on each track, allowing us to com-
pare between specific tracks and methods. We can deter-
mine that the bandwise spectral magnitude method is most
problematic with track number 1, the Jazz piece. Perhaps
the most surprising sign is the performance of track 2, the
rock music; the performance is similar across methods,
though the control actually comes slightly ahead of all the
others. The two rhythm magnitude methods do reason-
ably well at track 5, the abstract piece, though their per-
formance is below par elsewhere.

Interestingly the bandwise variation of the spectral

64



magnitude causes the (quite uniform) jazz piece (1) to be
even less distinguishable and the cleaner, better defined
dance piece (5) to be more distinguishable. This is not
surprising; while the addition of colour to a track that is
musically dynamic and heavy will help further define seg-
mentations, it may easily hinder a track whose segmen-
tations are questionable and ill-defined by providing the
user with even more false-positive cues.

6 CONCLUSION
We demonstrated that automatic, content-based visual an-
notation, in general, makes a positive addition to mod-
ern music playing tools. We presented findings, through
a user study, that people find such visual annotations both
usable and aesthetically pleasing. We also found that peo-
ple were able to immediately utilise the visualisation with
an absolute minimum amount of training.

We demonstrated several annotations, and found each
had a particular niche under which it worked reasonably
well. We found the spectral magnitude and bandwise vari-
ant to be the overall winners, for their consistant per-
formance. The bandwise variant was declared favourite
for its visual charm as well as general performance. We
showed that the addition of the novel bandwise technique
for introducing colour to two of the methods helps under
many circumstances with quantitative evidence, and that
users typically prefer to use the colour annotation.

This study didn’t take into account various accessibil-
ity problems, not least colour blindness. However it would
seem unlikely that colour blindness in itself would have
such a detrimental impact as to render the colour variants
worse than the original monochromatic versions.

7 FURTHER WORK
In this study only a quick and simple test was carried out
giving the user a minimum of time to learn. It is unclear
whether a greater learning time would change the relative
performances of the metrics.

With proper standardisation such a technique could
be used to “jist” music tracks at browsing in music
stores. Such a “fingerprint” may describe music ade-
quately enough to allow a potential purchaser to determine
their interest in a record. Initially, electronic music play-
ers such as amaroK could have such a fingerprint added
to their playlist for each track, giving the user a visual cue
and providing an automatic iconification a music track. In
theory the fingerprint information could be precomputed
and embedded into the digital file itself. Enough technolo-
gies exist to encapsulate such metadata inside a track such
as the Ogg Vorbis comment system or the MP3 id3v2 tag
system.

These techniques, or others like them could easily be
combined with machine learning algorithms to convert
from the continuous form presented here to a discretely
annotated form with specific semantics, in an automatic
version of the work by (Couprie, 2004).

In so far as the bandwise mechanism was imple-
mented, this study conducted only a simple 3-way fair
division of the critical bands. Initial experimentation sug-

gests that uneven division could significantly improve the
fidelity of the resultant visualisation. Furthermore, such a
graphic has the potential to show more information; vary-
ing the width of the stripes would allow further metrics to
be encoded.
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